ALGEBRAIC STRUCTURES

Xantcha

Examination 26th August 2014

Solutions. Complete solutions are required for each problem.

Marking. Each problem is worth 6 points.

- The marks 3, 4 and 5 correspond approximately to the scores 18, 25 and 32, respectively, distributed reasonably evenly among the three subdivisions Group Theory, Ring Theory and Field Theory.
- Also, in order to pass, a student should demonstrate some knowledge of the fundamental definitions of the course. Definitions should be written out formally, using complete sentences.
- I. (a) Define a group.
 - (b) Define a subgroup.
 - (c) Let G be a group, and define a map

$$\gamma \colon G \times G \to G, \qquad (x, y) \mapsto xy^{-1}.$$

Shew that $\gamma(x, x) = 1$.

- (d) Shew that $\gamma(x, y)\gamma(y, x) = 1$.
- (e) Shew that $\gamma(\gamma(x,z),\gamma(y,z)) = \gamma(x,y)$.
- 2. (a) Let $F \le E$ be fields. Define the *degree over* F of an algebraic element $\alpha \in E$.
 - (b) Shew that $\alpha = \sqrt{2 + \sqrt{2}}$ is algebraic of degree 4 over Q.
 - (c) Find a field over which α becomes algebraic of degree 2.
- 3. (a) Define the symmetric group on n symbols, S_n .

- (b) Explain, by means of (non-trivial) examples, how to perform multiplication and take inverses of permutations in S_n .
- (c) Define what it means for a permutation in S_n to be even or odd.
- (d) Give examples of even and odd permutations (and indicate why they are even and odd, respectively).
- 4. (a) Define a group homomorphism.
 - (b) Shew that the map

$$\varphi \colon \mathbf{C} \to \mathbf{C}^*, \qquad z \mapsto e^z$$

is a group homomorphism. (C^* denotes the same as $C\setminus\{o\}$.)

- (c) Determine the image and kernel of φ.
- (d) What does the Fundamental Homomorphism Theorem say, when applied to φ?
- 5. (a) Starting from the concept of a ring (this need not be defined), define an *integral domain*. Give an example and a non-example.
 - (b) Shew that a ring is an integral domain if and only if it is a subring of some field.
 - (c) Let D be an integral domain and let $a, b \in D$. Shew that the principal ideals (a) and (b) are equal if and only if b = au for some inversible element u.
- 6. Let *R* be a commutative, unital ring.
 - (a) Define the concept of an *ideal* in *R*.
 - (b) Let I and J be ideals of R. The ideal sum I + J is defined by

$$I + J = \{ x + y \mid x \in I, y \in J \}.$$

Shew that I + J is an ideal.

- (c) Shew that the rings I + J and $I \times J$ are isomorphic under the hypothesis that $I \cap J = \{o\}$.
- 7. Let $F \leq E$ be a field extension.
 - (a) Define what it means for this field extension to be *algebraic*.
 - (b) Define what it means for this field extension to be finite.
 - (c) Shew that $F \leq E$ is algebraic if and only if each ring R such that $F \leq R \leq E$ is a field.