Prov i matematik Algebraic structures, 10hp 2015-08-25

Skrivtid: 14.00–19.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

- 1. Let $D_6 = \langle \rho, \sigma \mid \rho^6 = e = \sigma^2, \sigma \rho \sigma^{-1} = \rho^{-1} \rangle$ be the dihedral group of order 12.
- (a) Find the orders of the cyclic subgroups $\langle \varrho \rangle < D_6$ and $\langle \varrho^i \sigma \rangle < D_6$, for all $0 \le i \le 5$.
- (b) Which of the subgroups in (a) is normal in D_6 , and which is not? Give reasons for your answer!
- 2. Show that every abelian group of order 2310 is cyclic.
- 3. (a) Prove that every complex number α is algebraic over \mathbb{R} .
- (b) Show that the quotient ring $\mathbb{R}[X]/(\text{irrpol}_{\mathbb{R}}(\alpha))$ is isomorphic to \mathbb{C} , whenever $\alpha \in \mathbb{C} \setminus \mathbb{R}$.
- (c) Prove that the quotient rings $\mathbb{R}[X]/(X^2+aX+b)$ and $\mathbb{R}[X]/(X^2+cX+d)$ are isomorphic, whenever $a,b,c,d\in\mathbb{R}$ satisfy $a^2<4b$ and $c^2<4d$.
- 4. Find the addition table and the multiplication table of a field of order 4.
- 5. (a) Let K be a field, and let f(X) be a nonconstant polynomial in K[X]. When is f(X) called *separable*? Reproduce the definition!
- (b) Let p(X) and q(X) be polynomials in K[X] that both are monic, irreducible and separable. Assume moreover that $p(X) \neq q(X)$. Is f(X) = p(X)q(X) separable? Proof or counterexample!

- 6. Given $f(X) = a_0 + a_1X + a_2X^2 + a_3X^3 + a_4X^4 + X^5 \in \mathbb{Z}_5[X]$, prove the following assertions.
- (a) If $a_1 = a_2 = a_3 = a_4 = 0$, then f(X) is not irreducible in $\mathbb{Z}_5[X]$.
- (b) If f(X) is irreducible in $\mathbb{Z}_5[X]$, then f(X) is separable.
- 7. Explain why the problem of doubling the cube is not solvable by ruler and compass.
- 8. (a) What is meant by a Galois extension? Reproduce the definition!
- (b) Let \mathbb{A} be the field of all algebraic numbers. Show that $\mathbb{Q} \subset \mathbb{A}$ is a Galois extension.
- (c) If $\mathbb{Q} \subset E \subset \mathbb{A}$ is an intermediate field, then every field morphism $\varphi : E \to \mathbb{A}$ can be extended to a field morphism $\psi : \mathbb{A} \to \mathbb{A}$. Use this fact to show that the Galois group $\operatorname{Gal}(\mathbb{A}/\mathbb{Q})$ is infinite.

GOOD LUCK!