KANDIDATPROGRAMMET I MATEMATIK AUTUMN TERM 2015

Prov i matematik Algebraic structures, 10hp 2015-12-11

Skrivtid: 8.00–13.00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

- 1. Let \mathbb{R}^{ι} and \mathbb{C}^{ι} be the unit groups of \mathbb{R} and \mathbb{C} , respectively.
- (a) Show that $\varphi: \mathbb{C}^{\iota} \to \mathbb{R}^{\iota}$, $\varphi(z) = |z|$ is a group morphism.
- (b) For any $z \in \mathbb{C}^{\iota}$, describe the coset $z(\ker \varphi)$ geometrically as a subset of the complex plane.
- (c) The set $\mathbb{R}_{>0}$ of all positive real numbers and the unit circle \mathbb{S}^1 are subgroups of \mathbb{R}^{ι} and \mathbb{C}^{ι} , respectively. Prove that $\mathbb{C}^{\iota}/\mathbb{S}^1 \to \mathbb{R}_{>0}$.
- 2. Explain why the following assertions hold true:
- (a) Every group of order 86 has a unique normal subgroup of index 2.
- (b) Every group of order 86 is solvable.
- (c) Every abelian group of order 86 is cyclic.
- (d) Non-abelian groups of order 86 exist.
- 3. The permutation $\sigma \in S_9$ is given in two-line notation by

Find the cycle decomposition of σ , its cycle type, its order, and the cardinalities $|K(\sigma)|$ and $|C(\sigma)|$ of the conjugacy class and the centralizer of σ , respectively.

- 4. For each $i \in \{1, 2, 3\}$ determine all rings R having the property (P_i) , given as follows:
- (P_1) The identity x + y = xy holds for all $x, y \in R$.
- (P_2) There exists a ring morphism $\varphi: \{0\} \to R$.
- (P_3) There exists a ring morphism $\varphi: R \to \{0\}$.

PLEASE TURN OVER!

- 5. Let ζ be the complex number $\zeta = \frac{1+i}{\sqrt{2}}$. Find the degree $d = [\mathbb{Q}(\zeta) : \mathbb{Q}]$, and find the rational coordinates of $\frac{1}{1+\zeta}$ in the \mathbb{Q} -basis $(1,\zeta,\ldots,\zeta^{d-1})$ of $\mathbb{Q}(\zeta)$.
- 6. Determine the degree $[\mathbb{C}(\alpha) : \mathbb{C}]$ for all $\alpha \in \operatorname{frac}(\mathbb{C}[X])$.
- 7. Let K be a field, and $f(X) \in K[X]$ a polynomial with coefficients in K.
- (a) What is meant by a splitting field of f(X)? Reproduce the definition!
- (b) Does a splitting field of f(X) exist, and if so, in which sense is it unique? Reproduce the statement!
- (c) Let E and F be splitting fields of f(X). Suppose that all roots of f(X) in E are simple. What can you say about the multiplicities of the roots of f(X) in F? Prove your statement!
- 8. Let p be a prime natural number. Prove the following statements:
- (a) The identity $x^p = x$ holds for all elements $x \in \mathbb{Z}_p$.
- (b) The identity $(f(X))^p = f(X^p)$ holds for all polynomials $f(X) \in \mathbb{Z}_p[X]$.
- (c) Every finite field extension $\mathbb{Z}_p \subset E$ is Galois.

GOOD LUCK!