$m Prov~i~matematik \ Algebraic~structures, 10hp \ 2016-03-21$

Skrivtid: 14:00–19:00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

- 1. Let \mathbb{C}^{ι} and \mathbb{S}^{1} be the multiplicative group of \mathbb{C} and the unit circle in the complex plane, respectively.
- (a) Show that the map $\psi: \mathbb{C}^{\iota} \to \mathbb{S}^1$, $\psi(z) = \frac{z}{|z|}$ is a group morphism.
- (b) For any $z \in \mathbb{C}^{\iota}$, describe the coset $z(\ker \psi)$ geometrically, as a subset of the complex plane.
- (c) Prove that $\mathbb{C}^{\iota}/\mathbb{R}_{>0} \xrightarrow{\tilde{}} \mathbb{S}^1$, where $\mathbb{R}_{>0}$ is the set of all positive real numbers.
- 2. (a) Determine all natural numbers $1 \le n \le 9$ such that a non-abelian group of order n exists.
- (b) Classify all abelian groups of order less or equal to 9.
- 3. The permutation $\sigma \in S_{11}$ is given in two-line notation by

Find the cycle decomposition of σ , its cycle type, its order, and the cardinalities $|K(\sigma)|$ and $|C(\sigma)|$ of the conjugacy class and the centralizer of σ , respectively.

- 4. (a) Show that, for every ring R, there is a unique ring morphism $\varphi: \mathbb{Z} \to R$.
- (b) The set $S = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ is a ring, with componentwise defined addition and multiplication. Determine $\ker \varphi$ and $\operatorname{im} \varphi$, for the unique ring morphism $\varphi : \mathbb{Z} \to S$.
- (c) According to the Isomorphism Theorem for Rings, the ring morphism $\varphi : \mathbb{Z} \to S$ in (b) induces a ring isomorphism $\overline{\varphi} : A \to B$. Make the rings A and B explicit.

Please turn over!

- 5. (a) What is meant by a domain? Reproduce the definition!
- (b) Prove that the ring $R = \mathbb{C}[X,Y]/(X^2 + Y^2 1)$ is a domain.
- 6. Let K be a finite field of odd order q, and let K^{ι} be its multiplicative group. The set $K^{\iota}_{sq} = \{x^2 \mid x \in K^{\iota}\}$ of all squares in K^{ι} is a subgroup of K^{ι} .
- (a) Determine the order of K_{sq}^{ι} , and the index of K_{sq}^{ι} in K^{ι} .
- (b) Let $a \in K^{\iota} \setminus K_{sq}^{\iota}$. Show that $E_a = K[X]/(X^2 a)$ is a finite field of order q^2 .
- (c) Let $a, b \in K^{\iota} \setminus K_{sa}^{\iota}$. Explain why the fields E_a and E_b , defined as in (b), are isomorphic.
- 7. Let $q = p^n$, where p is prime and $n \in \mathbb{N} \setminus \{0\}$. Let \mathbb{F}_p and \mathbb{F}_q be fields of order p and q, respectively. The field extension $\mathbb{F}_p \subset \mathbb{F}_q$ is Galois, with Galois group G.
- (a) What is the order of G? Motivate your answer!
- (b) Show that the map $\sigma: \mathbb{F}_q \to \mathbb{F}_q, \ \sigma(x) = x^p$, is an element in G.
- (c) What is the order of σ ? Motivate your answer!
- (d) Use (a)–(c) to determine the structure of G.
- 8. Let $E = \mathbb{Q}(\zeta)$, where $\zeta = e^{\frac{2\pi}{7}i}$. Find a primitive element for each intermediate field $\mathbb{Q} \subset I \subset E$, such that $\mathbb{Q} \neq I$ and $I \neq E$.

GOOD LUCK!