$m Prov~i~matematik \ Algebraic~structures, 10hp \ 2016-08-23$

Skrivtid: 8:00–13:00. Inga hjälpmedel förutom skrivdon. Lösningarna skall åtföljas av förklarande text. Varje uppgift ger maximalt 5 poäng.

- 1. Let \mathbb{S}^1 be the unit circle in the complex plane.
- (a) Show that \mathbb{S}^1 is a group under complex multiplication.
- (b) Show that \mathbb{Z}^2 is an additive normal subgroup of \mathbb{R}^2 .
- (c) Prove that the quotient group $\mathbb{R}^2/\mathbb{Z}^2$ is isomorphic to the product group $\mathbb{S}^1 \times \mathbb{S}^1$.
- 2. Classify all finite abelian groups G of order $12 \leq |G| \leq 16$.
- 3. (a) Prove that every group of order 111 has a unique normal subgroup of index 3.
- (b) Quote the Theorem of Feit and Thompson, regarding solvable groups.
- (c) Prove, without invoking Feit-Thompson's Theorem, that every group of order 111 is solvable.
- (d) Show that every abelian group of order 111 is cyclic.
- 4. The permutation $\sigma \in S_{12}$ is given in two-line notation by

Find the cycle decomposition of σ , its cycle type, its order, and the cardinalities $|K(\sigma)|$ and $|C(\sigma)|$ of the conjugacy class and the centralizer of σ , respectively.

- 5. (a) Let R be any ring. What is meant by a (two-sided) R-ideal? Reproduce the definition!
- (b) Determine all *R*-ideals for the ring $R = \mathbb{R}^{2 \times 2}$.

- 6. Let p be a prime number, and let \mathbb{F}_p and \mathbb{F}_{p^3} be finite fields of order p and p^3 , respectively.
- (a) Show that there is an injective ring morphism $\varphi: \mathbb{F}_p \to \mathbb{F}_{p^3}$.
- (b) Prove that every element $a \in \mathbb{F}_p$ has a third root in \mathbb{F}_{p^3} .
- 7. Let $k \subset \ell$ be a field extension of degree 2, such that $\operatorname{char}(k) \neq 2$.
- (a) Prove that $k \subset \ell$ is a Galois extension, whose Galois group G has order 2.
- (b) Let $\sigma \in G \setminus \{\mathbb{I}\}$. Prove that the subset $I = \{x \in \ell \mid \sigma(x) = -x\} \subset \ell$ is a 1-dimensional k-linear subspace of ℓ , such that $k + I = \ell$ and $k \cap I = \{0\}$.
- (c) Show that $I = \{x \in \ell \mid x^2 \in k\} \setminus (k \setminus \{0\}).$
- 8. Let $\zeta = e^{\frac{2\pi}{37}i}$. Determine all intermediate fields $\mathbb{Q} \subset I \subset \mathbb{Q}(\zeta)$.

GOOD LUCK!