## MATEMATISKA INSTITUTIONEN UPPSALA UNIVERSITET

Examinator: Veronica Crispin Quiñonez

Lösningsförslag till tentamen Algebraiska strukturer 10 hp 2017-04-18 kl 08-13

- (1) (a) T (b) T (c) F (d) T (e) F (T for  $n \le 4$ ) (f) F (T for  $p^n$ ) (g) T (h) T (i) F (j) F.
- (2)  $2016 = 2^5 \cdot 3^2 \cdot 7$ . By The Fundamental thm of fin. gen. abelian groups (0,5 p) the non-isomorphic abelian groups are:  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ,  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ,  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ,  $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ,  $\mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ,  $\mathbb{Z}_4 \times \mathbb{Z}_8 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_7$ ; then just as many but with  $\mathbb{Z}_9$  instead of  $\mathbb{Z}_3 \times \mathbb{Z}_3$ .
- (3) (a) The alternating subgroup is normal, here  $A_4$  (1p). Moreover, there is the Klein group  $K = \{(1), (12)(34), (13)(24), (14)(23)\}$  (1p). (b) (1p) (c) For example,  $(1) \triangleleft \langle (12)(34) \rangle \triangleleft K \triangleleft A_4 \triangleleft S_4$ . (2p)
- (4) (a) Standard exercise. (2,5p) (b) Proposition 4.6 in the course book. (2,5p)
- (5) By definition any  $f_i \in A$  and  $g_i \in B$  can be written as  $f_i = f_{i1}x^3 + f_{i2}y^4$  and  $g_i = g_{i1}x^4 + g_{i2}y^3$  where  $f_{ij}, g_{ij} \in \mathbb{R}[x, y]$ }. (1p)

  Hence, an element in AB is a finite sum of the elements on the form  $(f_{i1}x^3 + f_{i2}y^4) \cdot (g_{i1}x^4 + g_{i2}y^3) = f_{i1}g_{i1}x^7 + f_{i1}g_{i2}x^3y^3 + f_{i2}g_{i1}x^4y^4 + f_{i2}g_{i2}y^7 = f_{i1}g_{i1}x^7 + (f_{i1}g_{i2} + f_{i2}g_{i1}xy)x^3y^3 + f_{i2}g_{i2}y^7 = p_{i1}x^7 + p_{i2}x^3y^3 + p_{i3}y^7$  with  $p_{ij} \in \mathbb{R}[x, y]$ . As any element in AB is a sum of multiples of  $x^7, x^3y^3$  and  $y^7$ , these three monomials form a generating set for AB. (3p)

  Moreover, the set is irredundant as, for example,  $x^7$  can never be expressed as  $p_1x^3y^3 + p_2y^7$ . The same goes for the other generators. (1p)
- (6) (a) 0,5p per condition.
  - (b) For any  $\phi(1_{12}) = m_6$  the additivity condition is fulfilled, and the map is well-defined as if  $a \equiv_{12} b$ , which is equivalent to a = b + 12n, then  $\phi(a) = \phi(b+12n) = bm + 12nm \equiv_6 bm = \phi(b)$  (0,5p). For the multiplicativity condition to be fulfilled we must have  $\phi(1_{12})\phi(1_{12}) = m \cdot m \equiv_6 m = \phi(1_{12})$ . Going through all elements of  $\mathbb{Z}_6$  we see that 0, 1, 3 and 4 fulfills  $m^2 \equiv_6 m$ . Thus, there are four ring homomorphisms from  $\mathbb{Z}_{12}$  to  $\mathbb{Z}_6$  defined by sending the identity to 0, 1, 3 or 4. (4p)
- (7) (a) Standard exercise.
  - (b) Both  $\mathbb{R}$  and  $\mathbb{Q}[i]$  are subfields of  $\mathbb{C}$ , but  $\sqrt{2} + \frac{i}{2}$  does not belong to their union.
- (8) See the example in Section V.5 in the course book or the solution to bonus exercies 3 from Nov 2016 posted on Studentportalen.