MATEMATISKA INSTITUTIONEN UPPSALA UNIVERSITET

Examinator: Veronica Crispin Quiñonez

Tentamensskrivning Algebraiska strukturer 10 hp 2017-08-15 kl 08-13

- The usual means are allowed: pen, pencil, eraser, ruler and compass.
- Each problem is worth 5 ponts, unless it is stated otherwise. The scores 20p, 27p and 34p correspond to the grades 3, 4 and 5 respectively.
- Complete solutions, with all steps clearly explained, are required for problems 2-8.
- (1) State whether the following statements are true or false. Correct answer is 0.5 p, wrong answer -0.5 p, no answer 0 p. You can get a minimum of 0 p on this question.
 - (a) Every prime element is irreducible in an integral domain.
 - (b) Any ideal is closed under addition.
 - (c) If two distinct prime numbers p and q divide the order of a group G, then there is a subgroup in G of order pq.
 - (d) Every integral domain is a field.
 - (e) The alternating group A_8 is unsolvable.
 - (f) Every finite field has p elements, where p is some prime number.
 - (g) The ring of quadratic matrices $M_8(\mathbb{C})$ does not contain any zerodivisors.
 - (h) The permutation $(1\ 3\ 4\ 2) \in S_4$ is even.
 - (i) $\mathbb{Z}_8 \times \mathbb{Z}_{15}$ is a cyclic group.
 - (i) $\sqrt[8]{15}$ is an algebraic number.
- (2) Classify all groups of order ≤ 8 , abelian as well as non-abelian.
- (3) (a) State the definition of a (sub-)normal series of a group.
 - (b) Find isomorphic refinements of the series $0 \le 27\mathbb{Z} \le 9\mathbb{Z} \le \mathbb{Z}$ and $0 \le 4\mathbb{Z} \le \mathbb{Z}$.
 - (c) Write down all the factor groups in the refinements above. The order does not need to follow any of the refinements.
- (4) Consider the permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 8 & 1 & 3 & 4 & 6 & 5 & 2 & 9 & 10 & 7 \end{pmatrix}$. (2,5 p)
 - (a) Write σ in cycle notation.
 - (b) Determine the sign of σ .
 - (c) Determine the order of σ in S_{10} .
- (5) Prove that a field homomorphism is always injective. (2,5 p)
- (6) Describe all the monomials of degree up to three in the ring $\mathbb{R}[x,y,z]/(y^3-xz)$. Make sure the elements are written in the reduced form.
- (7) (a) Let I be an ideal of a ring R and $\phi: R \to S$ a ring homomorphism. Show that if ϕ is surjective, then $\phi(I)$ is an ideal of S. Give a counterexampel if f is not surjective.
 - (b) Give a counterexample when ϕ is not surjective.
- (8) (a) Let K and L be subfields of a field F. Show that $K \cap L$ is a subfield of F.
 - (b) Give an example of F, K, L as in above so that $K \cup L$ is not a subfield of F.
- (9) (a) Show that a field of prime power order p^n is a splitting field over \mathbb{Z}_p (or \mathbb{F}_p) of $x^{p^n} x$.
 - (b) Give the definition of a Galois extension.