MATEMATISKA INSTITUTIONEN UPPSALA UNIVERSITET

Examinator: Veronica Crispin Quiñonez

Kortfattade lösningsförslag till tentamen Algebraiska strukturer 10 hp 2018-01-11 kl 08-13

- (c) F [PID is UFD] (1) (a) F [maximal is prime] (b) T (d) F $[\{\pm 1\}]$ (e) F [unary] (g) F = (21)(23)(25)(h) F (i) F $[p^k \text{ elements}]$ (j) T [dividing an equilateral triangle in the right
 - way gives a right triangle with the other angles α and 2α such that $\alpha = 30^{\circ}$
- (2) (a) For every $a \in \mathbb{Z}$ we have $\frac{a}{3^n} \in \mathbb{Q}$. Further $\frac{1}{3^n} \cdot 0 = 0 \in \frac{1}{3^n} \mathbb{Z} \neq \emptyset$ and for all $a, b \in \mathbb{Z}$: $\frac{a}{3^n} \frac{b}{3^n} = \frac{a-b}{3^n} \in \frac{1}{3^n} \mathbb{Z}$. (1 p)
 - (b) By above $0 \in H$. Further, any two elements in H we can write as $\frac{a}{3r}\mathbb{Z}, \frac{b}{3s}$ for
 - some $a, b \in \mathbb{Z}$ and $r, s \in \mathbb{N}$. Then $\frac{a}{3r} \frac{b}{3s} = \frac{3^s a 3^r b}{3^{rs}} \in \frac{1}{3^{rs}} \mathbb{Z}$. (2 p) (c) Firstly, as $\frac{a}{3^n} = \frac{3a}{3^{n+1}}$ we have $\frac{1}{3^n} \mathbb{Z} \subset \frac{1}{3^{n+1}} \mathbb{Z} = \langle \frac{1}{3^{n+1}} \rangle$, which is simply generated. For any fixed $N \in \mathbb{N}$ there is always a rational number $\frac{a}{3^{N+1}}$ with a being non-multiple of 3, that does not belong to $\frac{1}{3^N}\mathbb{Z}$.
- (3) $20 \cdot 18 = 2^3 \cdot 3^2 \cdot 5$. By The fund. thm for fin. gen. ab. grps (0,5 p), we have the following direct products of this order: $C_8 \times C_9 \times C_5$, $C_8 \times C_3 \times C_3 \times C_5$; $C_2 \times C_4 \times C_9 \times C_5, \ C_2 \times C_4 \times C_3 \times C_3 \times C_5; \quad C_2 \times C_2 \times C_2 \times C_9 \times C_5,$ $C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_5$.
- (4) (a) All 2-products of transpositions are in V_4 . By straightforward calculations one shows that $\alpha\sigma\alpha^{-1} \in V_4$ for all $\alpha \in S_4$ (considering a random 4-cycle, 3-cycle and transposition) and every $\sigma \in V_4$.
 - (c) $\{(1)\} < \langle (12)(34) \rangle < V_4 < A_4 < S_4$. (b) - (1 p) (2 p)
- (b) Since $\mathbb{Z}[i] \subset \mathbb{C}$, any zerodivisor in $\mathbb{Z}[i]$ is a zerodivisor in \mathbb{C} , (5) (a) - (1 p) which is impossible as tha latter is a field.
 - (b) In \mathbb{C} we have $(a+bi)^{-1} = \frac{a-bi}{\sqrt{a^2+b^2}}$. For that to be a Gaussian integer we must have $\frac{a}{\sqrt{a^2+b^2}} = n$, $\frac{b}{\sqrt{a^2+b^2}} = m$ for $n, m \in \mathbb{Z}$. After some arithmetics we get $a^2 + b^2 = (n^2 + m^2)(a^2 + b^2)$ so $n^2 + m^2 = 1$, that is, $n = \pm 1$, m = 0 or vice versa. More similar arithmetics gives the units $\{\pm 1, \pm i\}$.
- (6) (a) No, no, yes. (3 p) (b) Assume $\langle x,y\rangle = \langle f(x,y)\rangle$. But by polynomial and degree arguments there is no f(x,y) such that $x=f(x,y)\cdot p(x,y)$ and $y = f(x, y) \cdot q(x, y)$. (1 p) $\langle 4, x \rangle$ is not principle (showed on lectures). (1p)
- (7) (a) α is a root of $f = x^4 + 2x^2 + 25 \in \mathbb{Q}[x]$. f has no roots in \mathbb{Z} ; further, assuming $f = (x^2 + ax + b)(x^2 + cx + d)$ gives to a system of equations in $\mathbb{Z}[x]$:

$$f = (x^2 + ax + b)(x^2 + cx + d) \text{ gives to a system of equations in } \mathbb{Z}$$

$$\begin{cases} a + c = 0 & \text{solving which leads to now integer solutions.} \\ b + ac + d = 2 & \text{Thus, } f \text{ is irreducible by Gauss' lemma.} \\ ad + bc = 0 \\ bd = 25 & \text{(b) } [\mathbb{Q}[\alpha] : \mathbb{Q}] = \deg f = 4 & (2 \text{ p}) \end{cases}$$

- (b) The set $\{1, \alpha, \alpha^2, \alpha^3\}$ is linearly independent and, hence, is a basis.
- (8) Let $\omega = e^{\frac{2\pi i}{5}}$. Then $E = \mathbb{Q}[\omega]$ and $q(x) = Irr(\omega : \mathbb{Q}) = \frac{x^5 1}{x 1} = x^4 + x^3 + x^2 + x + 1$, which is irreducible as q(x + 1) is irreducible by the Eisenstein's criterion for p=5. (1 p) $\mathbb{Q}\subset E$ is normal (splitting field) and separable (char 0), so it is Galois. Gal (E/\mathbb{Q}) permutes the roots of q(x), and $\phi(\omega) = \omega^2$ generates all the Q-automorphisms: $\phi^2(\omega) = \omega^4$ (the complex conjugation), $\phi^3(\omega) = \omega^3$, $\phi^4(\omega) = \iota$. Since ϕ^2 has order 2, $Gal(E/\mathbb{Q}) \cong C_2 \times C_2$. (3 p)

The only non-trivial proper subgroup of $\operatorname{Gal}(E/\mathbb{Q})$ is $\langle \phi^2 \rangle$, and its fixed field is the only intermediate field. (1 p) Extra. $\phi^2(a+b\omega+c\omega^2+c\omega^3)$ is fixed if b=0, c=d (having in mind that $\omega^4=\overline{-1-\omega-\omega^2-\omega^3}$ because of q(x)). Thus, $Fix_E(\phi^2) = \mathbb{Q}[\omega^2 + \omega^3]$. In fact, $\omega^2 + \omega^3 = 2\cos(\frac{4\pi}{5})$ using trigonometry.