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Time: 08.00-13.00. No notes, books or electronic devices allowed. Please write your answers in English or
in Swedish. Justify all of your answers! Each problem gives 5 points. To get a grade of 3 you need at least
18 points, to get a grade of 4 you need at least 25 points and to get a grade of 5 you need at least 32 points.

1. (a) Let G be a group and H ⊂ G be a subset of G. Show that H is a subgroup of G if and only if
H 6= ∅ and for all x, y ∈ H we have xy−1 ∈ H.

(b) Let G be the set of all invertible complex 2 × 2-matrices. Then G is a group under usual matrix
multiplication. Let

H =

{(
w −z
z w

)
| w, z ∈ C, (w, z) 6= (0, 0)

}
.

Is H a subgroup of G? (Hint: recall that the inverse of an invertible complex 2 × 2-matrix A =(
a b
c d

)
is A−1 = 1

det(A)

(
d −b
−c a

)
.)

2. (a) Classify all abelian groups of order 900.

(b) Classify all groups of order 961.

3. Let G be a group of order 45. Determine which of the following statements are true.

(a) G has an element of order 9.

(b) G has a subgroup of order 9.

(c) G has a subgroup of order 5.

(d) G has a normal subgroup of order 9.

(e) G has a normal subgroup of order 5.

4. Let R2×2 be the set of all real 2 × 2-matrices. Then R2×2 is a ring under usual matrix addition and
multiplication. For each of the following subsets of R2×2, decide whether it is a subring.

(a) The set T =

{(
a 0
b c

)
| a, b, c ∈ R

}
.

(b) The set S =

{(
a b
b c

)
| a, b, c ∈ R

}
.

(c) The set H =

{(
a 0
0 0

)
| a ∈ R

}
.

TURN THE PAGE!



5. Let q(X,Y ) = X2 + Y 2 − 1 ∈ C[X,Y ].

(a) Show that q(X,Y ) is irreducible in C[X,Y ].

(b) Is q(X,Y ) prime?

(c) Is C[X,Y ]/(q(X,Y )) a domain?

6. For each of the following field extensions, compute its degree.

(a) Q ⊂ Q(
√

2).

(b) Q ⊂ Q( 3
√

2).

(c) Q ⊂ Q(
√

2, 3
√

2).

7. (a) Show that a field morphism is always injective.

(b) Let Fn be a finite field with n elements. Show that xn−1 = 1 for all x ∈ Fn \ {0}.
(c) Conclude that there is no field morphism F8 → F32.

8. Let E = Q(ζ), where ζ = e
2π
7 i.

(a) Determine the Galois group Gal(E/Q).

(b) Describe all subgroups of Gal(E/Q), ordered by inclusion and all intermediate fields Q ⊂ F ⊂ E,
ordered by inclusion.

GOOD LUCK!



Solutions

1. (a) Assume first that H ⊂ G is a subgroup. Then (SG2) implies e ∈ H and so H 6= ∅. Moreover, for
any x, y ∈ H we have by (SG3) that y−1 ∈ H and then by (SG2) that xy−1 ∈ G which proves the
“only if” part.

Assume now that H 6= ∅ and x, y ∈ H implies xy−1 ∈ H. Since H 6= ∅, there exists some element
x ∈ H. Then since x, x ∈ H we have by assumption that xx−1 = e ∈ H which proves (SG2). Then
for any x ∈ H we have e, x ∈ H and so by assumption ex−1 = x−1 ∈ H, which proves (SG3).
Finally, for any x, y ∈ H we have that x, y−1 ∈ H (since (SG3) is satisfied) and so by assumption

x
(
y−1

)−1
= xy ∈ H, which proves (SG1) and completes the proof.

(b) Let x =

(
w −z
z w

)
∈ H. Then

det(x) = ww − (−z)z = |w|2 + |z|2 > 0

and so x ∈ G. Hence H ⊂ G. Moreover, we have(
1 0
0 1

)
=

(
1 −0
0 1

)
∈ H

and so H 6= ∅. Finally, if x =

(
w −z
z w

)
, y =

(
u −v
v u

)
∈ H, then

xy−1 =

(
w −z
z w

)
· 1

|u|2 + |v|2

(
u v
−v u

)
=

1

|u|2 + |v|2

(
wu+ zv wv − zu
zu− wv zv + wu

)
=

(
wu+zv
|u|2+|v|2 − zu−wv

|u|2+|v|2
zu−wv
|u|2+|v|2

wu+zv
|u|2+|v|2

)
∈ H,

and so by part (a) we conclude that H is a subgroup of G.

2. (a) We have that 900 = 22 · 32 · 52. Hence by the fundamental theorem for finitely generated abelian
groups, the abelian groups of order 900 are classified by

Z4 × Z9 × Z25, Z2 × Z2 × Z9 × Z25,

Z4 × Z9 × Z5 × Z5, Z2 × Z2 × Z9 × Z5 × Z5,

Z4 × Z3 × Z3 × Z25, Z2 × Z2 × Z3 × Z3 × Z25,

Z4 × Z3 × Z3 × Z5 × Z5 Z2 × Z2 × Z3 × Z3 × Z5 × Z5.

(b) Since 961 = 312 is a prime squared, all groups of order 961 are abelian. Hence the groups of order
961 are classified by the fundamental theorem for finitely generated abelian groups to be Z961 and
Z31 × Z31.

3. (a) This is not true in general. For example, G = Z3 × Z3 × Z5 has no element of order 9.

(b) This is true by the first Sylow theorem since 9 = 32
∣∣ 45.

(c) This is true by the first Sylow theorem since 5
∣∣ 45.



(d) This is true. To see this, let s3 be the number of Sylow 3-subgroups of G. Then by the second
Sylow theorem we have

s3 ≡ 1 (mod 3)

s3
∣∣ 45

}
=⇒

s3 ∈ {1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43}
s3 ∈ {1, 3, 5, 9, 15, 45}

}
=⇒ s3 = 1.

and hence there exists exactly one Sylow 3-subgroup of G. Let us call it S. Then since 9 is the
heighest power of 3 that divides 45, we have |S| = 9. Since aSa−1 is also a subgroup of G with 9
elements for any a ∈ G, we have that aSa−1 = S for all a ∈ G and so aS = Sa for all a ∈ G, hence
S is normal.

(e) This is true. To see this, let s5 be the number of Sylow 5-subgroups of G. Then by the second
Sylow theorem we have

s5 ≡ 1 (mod 5)

s5
∣∣ 45

}
=⇒

s5 ∈ {1, 6, 11, 16, 21, 26, 31, 36, 41}
s5 ∈ {1, 3, 5, 9, 15, 45}

}
=⇒ s5 = 1.

and hence there exists exactly one Sylow 5-subgroup of G. Let us call it T . Then since 5 is the
heighest power of 5 that divides 45, we have |T | = 5. Since aTa−1 is also a subgroup of G with 5
elements for any a ∈ G, we have that aTa−1 = T for all a ∈ G and so aT = Ta for all a ∈ G, hence
T is normal.

4. (a) The set T is a subring of R2×2. We check the axioms:

(SR1)

(
1 0
0 1

)
∈ R2×2.

(SR2) Let x =

(
x1 0
x2 x3

)
, y =

(
y1 0
y2 y3

)
∈ T . Then x− y =

(
x1 − y1 0
x2 − y2 x3 − y3

)
∈ T .

(SR3) Let x =

(
x1 0
x2 x3

)
, y =

(
y1 0
y2 y3

)
∈ T . Then xy =

(
x1y1 0

x2y1 + x3y2 x3y3

)
∈ T .

(b) The set S is not a subring of R2×2 because (SR3) fails. For example, for x =

(
1 1
1 1

)
, y =(

1 1
1 −1

)
∈ S we have xy =

(
2 0
2 0

)
6∈ S.

(c) The set H is not a subring of R2×2 because (SR1) fails, since

(
1 0
0 1

)
6∈ H.

5. (a) We can write C[X,Y ] = (C[X])[Y ] = R[Y ] with R = C[X]. Then we write

q(X,Y ) = X2 + Y 2 − 1 = r0 + r1Y + r2Y
2

for some r0, r1, r2 ∈ R. Solving this system we immediately find r0 = X2 − 1, r1 = 0, r2 = 1. Our
aim is to apply Eisenstein’s criterion. Since C is a field, we have that R = C[X] is a ufd by Gauss’s
theorem. Moreover, f ∈ R[Y ] is primitive since r2 = 1. Next, we have that X + 1 ∈ irr(R) because
X + 1 has degree 1. Then

X + 1 - 1 = r2

X + 1
∣∣ 0 = r1

X + 1
∣∣ X2 − 1 = r0 since X2 − 1 = (X + 1)(X − 1)

(X + 1)2 - X2 − 1



where the last statement follows because (X+1)2g(X) = X2−1 =⇒ deg(g) = 0 and so g = c ∈ C,
hence

cX2 + 2cX + c = X2 − 1 =⇒ (c− 1)X2 + 2cX + (c+ 1) = 0.

From this we get
c− 1 = 0

2c = 0

c+ 1 = 0

 =⇒
c = 1

2 = 0

1 + 1 = 0


which is impossible. Hence we can apply Eisenstein’s criterion and we have that q(X,Y ) ∈
irr(R[Y ]) = irr(C[X,Y ]).

(b) Since C is a ufd, it follows that C[X,Y ] is also a ufd by Gauss’s theorem. Since q(X,Y ) ∈ C[X,Y ]
is irreducible by (a), it follows that it is also prime.

(c) C[X,Y ]/(q(X,Y )) is a domain. To see this we check the axioms:

(D1) Since C[X,Y ] is commutative, it follows that C[X,Y ]/(q(X,Y )) is also commutative since
multiplication is inherited from C[X,Y ].

(D2) We have 1 6∈ (q(X,Y )) since we clearly cannot have 1 = (X2 + Y 2 − 1)f(X,Y ) by checking
degrees. Hence

1C[X,Y ] = 1 + (q(X,Y )) 6= 0 + (q(X,Y )) = 0C[X,Y ],

as required.

(D3) Let f = f + (q(X,Y )), g = g + (q(X,Y )) ∈ C[X,Y ] with fg = 0C[X,Y ]. Then

(f + (q(X,Y )))(g + (q(X,Y ))) = 0 + (q(X,Y )) =⇒ fg + (q(X,Y )) = 0 + (q(X,Y ))

=⇒ fg ∈ (q(X,Y ))

=⇒ q(X,Y )
∣∣ fg

q(X,Y ) prime
=⇒ q(X,Y )

∣∣ f or q(X,Y )
∣∣ g

=⇒ f ∈ (q(X,Y )) or g ∈ (q(X,Y ))

=⇒ f = 0C[X,Y ] or g = 0C[X,Y ].

6. (a) We have
[
Q(
√

2) : Q
]

= deg irrpolQ
(√

2
)

= deg
(
X2 − 2

)
= 2. That X2 − 2 is irreducible over Q

follows since its roots are −
√

2,
√

2 6∈ Q and any factorization of X2 − 2 into non-units would have
a degree 1 polynomial appearing, and so one term of the form X − r with r being one of the roots
of X2 − 2. Since it is monic and has

√
2 as a root, it follows that irrpolQ

(√
2
)

= X2 − 2.

(b) We have
[
Q
(

3
√

2
)

: Q
]

= deg irrpolQ
(

3
√

2
)

= deg
(
X3 − 2

)
= 3. That X3 − 2 is irreducible over Q

follows since its roots are 3
√

2, e
2π
3 i 3
√

2, e
4π
3 i 3
√

2 6∈ Q and any factorization of X3 − 2 into non-units
would have a degree 1 polynomial appearing, and so one term of the form X− r with r being one of
the roots of X3 − 2. Since it is monic and has 3

√
2 as a root, it follows that irrpolQ

(
3
√

2
)

= X3 − 2.

(c) We first compute
[
Q
(√

2, 3
√

2
)

: Q
(

3
√

2
)]

. To this end we claim irrpolQ( 3√2)
(√

2
)

= X2 − 2. Since

X2 − 2 ∈ Q
(

3
√

2
)

(X) is monic and has
√

2 as a root, it is enough to show that it is irreducible

over Q
(

3
√

2
)
. Indeed, assume to a contradiction that it is not irreducible. Then it splits over

Q
(

3
√

2
)
, since it can be written as a product of two polynomials of degree 1. In particular X2−2 =(

X −
√

2
) (
X +

√
2
)

in Q
(

3
√

2
)

(X) implies that
√

2 ∈ Q
(

3
√

2
)
. Hence Q ⊂ Q

(√
2
)
⊂ Q

(
3
√

2
)

and
so [

Q
(

3
√

2
)

: Q
]

=
[
Q
(

3
√

2
)

: Q
(√

2
)] [

Q
(√

2
)

: Q
]

=⇒ 3 =
[
Q
(

3
√

2
)

: Q
(√

2
)]
· 2,



which is a contradiction. HenceX2−2 is indeed irreducible over Q
(

3
√

2
)

and so
[
Q
(√

2, 3
√

2
)

: Q
(

3
√

2
)]

=

deg irrpolQ( 3√2)
(√

2
)

= deg
(
X2 − 2

)
= 2. Combining everything together, we have[

Q
(√

2,
3
√

2
)

: Q
]

=
[
Q
(√

2,
3
√

2
)

: Q
(

3
√

2
)] [

Q
(

3
√

2
)

: Q
]

= 2 · 3 = 6.

7. (a) Let K,E be fields and φ : K → E be a field morphism. It is enough to show that kerφ = {0K}.
Assume to a contradiction that for some x ∈ K \ {0K} we have φ(x) = 0E . Then since K is a field
and x 6= 0K , there exists x−1 ∈ K with 1K = x−1x. Moreover, since φ is a field morphism, we have
φ(1K) = 1E . Then

1E = φ(1K) = φ(x−1x) = φ(x−1)φ(x) = φ(x−1)0E = 0E ,

and so 1E = 0E , contradicting the fact that E is a field. Hence kerφ = {0K} and φ is injective.

(b) Since Fn is a field, we have that F×n = Fn \ {0}. In particular, the unit group F×n has order
|F×n | = n− 1 and so for every x ∈ F×n we have xn−1 = 1 by Lagrange’s theorem.

(c) Assume to a contradiction that there exists such a field morphism g : F8 → F32 and let x ∈ F8\{0, 1}.
Then by (b) we have x7 = 1 and so

g(x)7 = g(x7) = g(1) = 1,

since g is a field morphism. On the other hand, again by (b) we have g(x)31 = 1. Then

g(x)7 = 1

g(x)31 = 1

}
=⇒

o(g(x))
∣∣ 7

o(g(x))
∣∣ 31

}
=⇒ o(g(x)) = 1 =⇒ g(x)1 = 1 =⇒ g(x) = 1.

But we also have g(1) = 1 and x 6= 1 by assumption. Hence g is not injective and we reach a
contradiction by (a). Therefore such a field morphism does not exist.

8. (a) We know that E = sf(Φ7). Hence the field extension Q ⊂ E is algebraic and normal. Since
char(Q) = 0, we have that Q ⊂ E is a separable field extension and so it is finite. Therefore, it is
a finite Galois extension. We have seen for the polynomial Φ7(X) ∈ Q[X] that it is irreducible and
separable, and its set of roots is

R = {ζ, ζ2, ζ3, ζ4, ζ5, ζ6}.

Hence every σ ∈ Gal(E/Q) induces a permutation σR : R→ R, in other words σR ∈ S6. It follows
that the map ρ : Gal(E/Q) → S6 defined by ρ(σ) = σR is a monomorphism, and in particular we
have that Gal(E/Q) ∼= im ρ < S6. Therefore, we need to describe im ρ.

Let π ∈ im ρ, that is π = σR for some σ ∈ Gal(E/Q). Then

π(ζ) = ζh

for some h ∈ {1, 2, 3, 4, 5, 6}. It follows that for every i ∈ {1, 2, 3, 4, 5, 6} we have

π(ζi) = σ(ζi) = σ(ζ)i = (ζh)i = ζhi.

Hence to determine π, it is enough to determine h since then we have

π(ζi) = ζhi,

for all ζi ∈ R. Hence we can write π = πh with πh(ζi) = ζhi. Therefore,

im ρ ⊂ {π1, π2, π3, π4, π5, π6}.



We now want to show the other inclusion as well. That is, for each h ∈ {1, 2, 3, 4, 5, 6} we need to
find a σ ∈ Gal(E/Q) such that σ(ζ) = ζh, since σ(ζi) = ζhi = πh(ζi) implies ρ(σ) = σR = πh and
so πh ∈ im ρ. We know that irrpolQ(ζ) = Φ7(X) generates ker εζ . Similarly, irrpolQ(ζh) = Φ7(X)
and it generates ker εζh . In particular, we have isomorphisms

εζ : Q[X]/ (Φ7(X))
∼−→ Q(ζ),

εζh : Q[X]/ (Φ7(X))
∼−→ Q(ζh).

Hence the composition
σ := εζhε

−1
ζ : Q(ζ)

∼−→ Q(ζh)

is a field isomorphism and it satisfies σ(ζ) = ζh. Moreover, we have the field extensions

Q ⊂ Q(ζh) ⊂ Q(ζ)

and
[Q(ζh) : Q] = deg(Φ7(X)) = [Q(ζ) : Q]

implies that [Q(ζ) : Q(ζh)] = 1 and so Q(ζh) = Q(ζ). So we have shown that σ ∈ Gal(E/K) with
σ(ζ) = ζh, as required. Hence

Gal(E/Q) ∼= im ρ = {π1, π2, π3, π4, π5, π6}.

In particular, |Gal(E/Q)| = 6 and Gal(E/Q) < S6. We now want to find the group structure of
im ρ. Notice that for k, h ∈ {1, 2, 3, 4, 5, 6} we have

πkπh(ζ) = πk(ζh) = ζkh = ζl = πl(ζ)

for some l ∈ {1, 2, 3, 4, 5, 6} such that kh ≡ l (mod 7). Hence

πkπh = πl, where kh ≡ l (mod 7)

and so the bijection
φ : im ρ←− Z×7 , φ(πh) = h

is a group isomorphism, since

φ(πkπh) = φ(πl) = l = kh = kh = φ(πk)φ(πh)

for all k, h ∈ {1, 2, 3, 4, 5, 6}. We know that Z×7 is cyclic and since im ρ ∼= Z×7 , we have im ρ ∼= C6.
Hence Gal(E/Q) ∼= C6.

(b) We first find a generator of Gal(E/Q). For this we need an element of order 6. Notice that π3
satisfies

ζ1
π3−→ ζ3

π3−→ ζ2
π3−→ ζ6

π3−→ ζ4
π3−→ ζ5

π3−→ ζ1

and so Gal(E/Q) is generated by σ = π3. The subgroups of a finite cyclic group correspond to the
divisors of the order of the group. Hence for the divisor graph

6

2 3

1

we have the subgroup inclusions graph

{1E} = 〈σ6〉

〈σ2〉 〈σ3〉

Gal(E/Q) = 〈σ1〉

<>

< >



corresponding to the intermediate fields inclusion graph

E

E〈σ
2〉 E〈σ

3〉.

Q

⊃⊂

⊃ ⊂


