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Exam in Algebraic Structures
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Time: 08.00-13.00. No notes, books or electronic devices allowed. Please write your answers in English or
in Swedish. Justify all of your answers! Each problem gives 5 points. To get a grade of 8 you need at least
18 points, to get a grade of 4 you need at least 25 points and to get a grade of 5 you need at least 32 points.

1. (a) Let G be a group and H C G be a subset of G. Show that H is a subgroup of G if and only if
H # @ and for all z,y € H we have 2y~ ' € H.

(b) Let G be the set of all invertible complex 2 x 2-matrices. Then G is a group under usual matrix

multiplication. Let
w =z
H_{<z w)|w,z€@,(w,z)#(0,0)}.

Is H a subgroup of G? (Hint: recall that the inverse of an invertible complex 2 x 2-matriz A =
a b\ . . _ 1 d —b
<c d> is A=l = T (—c u >)

2. (a) Classify all abelian groups of order 900.
(b) Classify all groups of order 961.

3. Let G be a group of order 45. Determine which of the following statements are true.
(a) G has an element of order 9.
(b) G has a subgroup of order 9.
(¢) G has a subgroup of order 5.
(d)
)

(e) G has a normal subgroup of order 5.

G has a normal subgroup of order 9.

4. Let R%2%2 be the set of all real 2 x 2-matrices. Then R2*? is a ring under usual matrix addition and
multiplication. For each of the following subsets of R?*2, decide whether it is a subring.

(a) ThesetT:{(CbL 2)|a,b,ceR}.
(b) Thesetsz{(‘b‘ g>|a,b,ceR}.
(c) ThesetH{(g 8)aeR}.

TURN THE PAGE!



5 Let ¢(X,Y)=X%2+Y?-1€eClX,Y].
(a) Show that ¢(X,Y) is irreducible in C[X,Y].
(b) Is ¢(X,Y) prime?
(¢) Is C[X,Y]/(¢(X,Y)) a domain?

6. For each of the following field extensions, compute its degree.
(a) @ C QW3).
(b) @ C Q(2).
() Q CQ(v2,V?2).

7. (a) Show that a field morphism is always injective.
(b) Let F,, be a finite field with n elements. Show that 2"~! =1 for all z € F,, \ {0}.
(¢) Conclude that there is no field morphism Fg — Fss.

8. Let B = Q(), where ¢ = 7,
(a) Determine the Galois group Gal(E/Q).
(b) Describe all subgroups of Gal(E/Q), ordered by inclusion and all intermediate fields Q C F C E,

ordered by inclusion.

GOOD LUCK!



1.

3.

Solutions

(a) Assume first that H C G is a subgroup. Then (SG2) implies e € H and so H # &. Moreover, for
any z,y € H we have by (SG3) that y=! € H and then by (SG2) that xy~! € G which proves the
“only if” part.

Assume now that H # @ and z,y € H implies zy~! € H. Since H # @, there exists some element
x € H. Then since z,x € H we have by assumption that zz~! = e € H which proves (SG2). Then
for any 2 € H we have e,x € H and so by assumption ex~! = 2z=! € H, which proves (SG3).
Finally, for any z,y € H we have that z,y~! € H (since (SG3) is satisfied) and so by assumption

T (yil)fl = zy € H, which proves (SG1) and completes the proof.

(b) Let z = (7“2” j) € H. Then

det(z) = ww — (—2)2 = |w|* + [2|* > 0

and so x € GG. Hence H C (. Moreover, we have

(6 V)-( 7)en

and so H # @. Finally, if x = (Z Z) Y = <u J) € H, then

w v

st o (V7). 1 T v
P \E @) W RE T

- 1 Wi+ 20 wu — 2u
C|ul2 4 )2 \Zu—-wv Zv + wu

wu+zv _ _Zu—wv
_ [ JulP+loP [u[*+][v]? cH,

ZU— WV wu+zv
[ul?+[v[? [ul?+]v[?

and so by part (a) we conclude that H is a subgroup of G.

(a) We have that 900 = 22 - 3% .52, Hence by the fundamental theorem for finitely generated abelian
groups, the abelian groups of order 900 are classified by

Zy X Ly X Zios, Lo X Lo X g X Lo,

Ty X Lg X sy X Zis, Lo X Loy X g X Ly X L5,

Ty X Ly X L3 X Zas, Zig X g X Lz X L3 X L5,
Ziy X Xy X Ly X Lis X L Lo X Yo X Zig X Lz X L5 X L.

(b) Since 961 = 312 is a prime squared, all groups of order 961 are abelian. Hence the groups of order
961 are classified by the fundamental theorem for finitely generated abelian groups to be Zgg; and
Z31 X Z31.

(a) This is not true in general. For example, G = Z3 X Zs x Zs has no element of order 9.
(b) This is true by the first Sylow theorem since 9 = 3 | 45.
(¢) This is true by the first Sylow theorem since 5 | 45.



4.

5.

(d)

(a)

This is true. To see this, let s3 be the number of Sylow 3-subgroups of G. Then by the second
Sylow theorem we have

s3 =1 (mod 3) s3 € {1,4,7,10,13,16,19,22, 25,28, 31, 34, 37, 40, 43} . .
S3 = 1.
s3 | 45 ss € {1,3,5,9,15,45} 3

and hence there exists exactly one Sylow 3-subgroup of G. Let us call it S. Then since 9 is the
heighest power of 3 that divides 45, we have |S| = 9. Since aSa~! is also a subgroup of G' with 9
elements for any a € G, we have that aSa~! = S for all a € G and so aS = Sa for all a € G, hence
S is normal.

This is true. To see this, let s5 be the number of Sylow 5-subgroups of G. Then by the second
Sylow theorem we have
s5 =1 (mod 5) sy € {1,6,11,16,21, 26,31, 36,41}
= s5=1.
S5 ’ 45 s5 €1{1,3,5,9,15,45}

and hence there exists exactly one Sylow 5-subgroup of G. Let us call it 7. Then since 5 is the
heighest power of 5 that divides 45, we have |T| = 5. Since aTa~! is also a subgroup of G with 5
elements for any a € G, we have that aT'a™! = T for all a € G and so aT = Ta for all a € G, hence
T is normal.

The set T is a subring of R2%2. We check the axioms:

10 2x2
(SR1) (0 1)6]R .

(SR2) Letx—@l 0>,y—<y1 0>€T.Thenxy—<ml_yl 0 )eT.

2 I3 Y2 Y3 T2 —Y2 T3 — Y3
(SR3) Let z = <w1 0>,y (yl O) € T. Then zy = ( g 0 ) eT.
T2 X3 Y2 Y3 Toy1 + T3Y2 T3Ys3

(b)

()

(a)

The set S is not a subring of R?*? because (SR3) fails. For example, for z = (1 1) Y =

1 1 2 0
<1 _1>€Swehavexy—<2 O)%S.

The set H is not a subring of R?>*2 because (SR1) fails, since ((1) ?) ¢ H.

We can write C[X,Y] = (C[X])[Y] = R[Y] with R = C[X]. Then we write
A(X,Y)=X2+Y? 1 =rg+mY +rY?

for some rg,71,72 € R. Solving this system we immediately find 7o = X2 — 1, r; =0, ro = 1. Our
aim is to apply Eisenstein’s criterion. Since C is a field, we have that R = C[X] is a ufd by Gauss’s
theorem. Moreover, f € R[Y] is primitive since ro = 1. Next, we have that X + 1 € irr(R) because
X + 1 has degree 1. Then

X+111=mr

X+1|0=r

X+1]X?2-1=ry since X?—1=(X+1)(X-1)
(X +1)2tXx2-1



(b)
()

6. (a)

where the last statement follows because (X +1)2g(X) = X?2—1 = deg(g) =0andso g =c € C,
hence
cXP 42X +ec=X*-1= (c—1)X*+2cX +(c+1)=0.

From this we get

c—1 =0 c =1
2c =0} = 2 =0
c+1 =0 1+41 =0

which is impossible. Hence we can apply Eisenstein’s criterion and we have that ¢(X,Y) €
irr(R[Y]) = irr(C[X, Y)).

Since C is a ufd, it follows that C[X,Y] is also a ufd by Gauss’s theorem. Since ¢(X,Y) € C[X,Y]
is irreducible by (a), it follows that it is also prime.

C[X,Y]/(¢(X,Y)) is a domain. To see this we check the axioms:

(D1) Since C[X,Y] is commutative, it follows that C[X,Y]/(¢(X,Y)) is also commutative since
multiplication is inherited from C[X,Y].

(D2) We have 1 ¢ (¢(X,Y)) since we clearly cannot have 1 = (X2 + Y2 — 1)f(X,Y) by checking
degrees. Hence

Loy =1+ (@(X,Y)) # 0+ (¢(X,Y)) = Ocrx vy,
as required.
(D3) Let f = f+ (¢(X,Y)), g =g+ (¢(X,Y)) € C[X,Y] with fg = O¢(x,y]. Then

(f +(@(X,Y))(g + (a(X,Y))) =0+ (¢(X,Y)) = fg+ (¢(X,Y)) =0+ (¢(X,Y))
= fg € (@(X,Y))
= ¢(X,Y) ‘ fg

(X,Y) prime
T (XY [ for g(XY) | g

= fe€(q(X,Y))orge (q(X,Y))

= [ =0c[x,y] or § = Ocx,v]-

We have [Q(\/ﬁ) : Q] = degirrpolg (\/5) = deg (X2 — 2) = 2. That X? — 2 is irreducible over Q
follows since its roots are —v/2,v/2 € Q and any factorization of X2 — 2 into non-units would have
a degree 1 polynomial appearing, and so one term of the form X — r with r being one of the roots
of X% — 2. Since it is monic and has v/2 as a root, it follows that irrpoly (v2) = X% — 2.

We have [@ (\75) : Q] = degirrpolgy (\3/5) = deg (X3 — 2) = 3. That X? — 2 is irreducible over Q
follows since its roots are ¥/2,e3¥/2,e5¥/2 ¢ Q and any factorization of X3 — 2 into non-units

would have a degree 1 polynomial appearing, and so one term of the form X — r with r being one of
the roots of X3 — 2. Since it is monic and has +/2 as a root, it follows that irrpolQ (\5/5) = X3 -2

We first compute [Q (v/2,V/2) : Q (¥/2)]. To this end we claim irrpolQ(%) (v2) = X% — 2. Since
X? -2 € Q(V2)(X) is monic and has v/2 as a root, it is enough to show that it is irreducible
over Q (\3/5) Indeed, assume to a contradiction that it is not irreducible. Then it splits over
Q (\?/5), since it can be written as a product of two polynomials of degree 1. In particular X2 —2 =

(X — ﬂ) (X + \/i) in Q (\‘75) (X) implies that v/2 € Q (\3/5) Hence Q C Q (\/i) cQ (\?/5) and
o(4%) o~ [0(%) - 0()] [a()d] — 3-[a(#2) a(v})] >



which is a contradiction. Hence X2—2 is indeed irreducible over Q (\3/5) and so [Q (\/5, \3/5) :Q (\3/5)]
deg irrpolQ( %) (\@) = deg (X2 - 2) = 2. Combining everything together, we have

[@(v2,¥2):q] = [0 (v2.¥2) @ (¥2)] [0(V2) ;] =2-3=s.

Let K, E be fields and ¢ : K — FE be a field morphism. It is enough to show that ker ¢ = {0x}.
Assume to a contradiction that for some x € K \ {Ox} we have ¢(z) = 0g. Then since K is a field
and z # O, there exists 7! € K with 1x = 2~ '2. Moreover, since ¢ is a field morphism, we have

1g = ¢(1x) = ¢(z7'z) = ¢z ")g(x) = ¢p(z~)0p = 0,

and so 1g = Op, contradicting the fact that E is a field. Hence ker ¢ = {0k} and ¢ is injective.

Since F,, is a field, we have that F¥ = F, \ {0}. In particular, the unit group F* has order
|FX| =n —1 and so for every x € FX we have 2"~ ! = 1 by Lagrange’s theorem.

Assume to a contradiction that there exists such a field morphism g : Fg — F35 and let z € Fg\{0, 1}.
Then by (b) we have 27 = 1 and so

g9(@)" =g(@") =g(1) =1,
since g is a field morphism. On the other hand, again by (b) we have g(z)3! = 1. Then

g(a) =1 } _, olg@) |7

o@ =1 = olg(w) | 31} = olgl) =1 = g@)' =1 = gl=) =1

But we also have g(1) = 1 and = # 1 by assumption. Hence ¢ is not injective and we reach a
contradiction by (a). Therefore such a field morphism does not exist.

We know that E = sf(®7). Hence the field extension Q C F is algebraic and normal. Since
char(Q) = 0, we have that Q C E is a separable field extension and so it is finite. Therefore, it is
a finite Galois extension. We have seen for the polynomial ®7(X) € Q[X] that it is irreducible and
separable, and its set of roots is

R={¢¢ ¢, ¢ ¢
Hence every o € Gal(E/Q) induces a permutation o : R — R, in other words og € Sg. It follows

that the map p : Gal(E/Q) — S defined by p(c) = or is a monomorphism, and in particular we
have that Gal(E/Q) = im p < Sg. Therefore, we need to describe im p.

Let 7 € im p, that is 7 = o for some o € Gal(E/Q). Then

for some h € {1,2,3,4,5,6}. It follows that for every i € {1,2,3,4,5,6} we have
m(¢") = o) =o(Q)' = (¢") ="
Hence to determine m, it is enough to determine h since then we have
(¢ = ¢,
for all ¢! € R. Hence we can write 7 = 7, with 7, (¢?) = ¢**. Therefore,

imp C {7y, 7o, 3, T4, 75, W6 }-



We now want to show the other inclusion as well. That is, for each h € {1,2,3,4,5,6} we need to
find a o € Gal(E/Q) such that o(¢) = ¢, since o(¢?) = (M = 7;,(¢?) implies p(0) = or = 7, and
so m, € imp. We know that irrpoly(¢) = ®7(X) generates kere¢. Similarly, irrpoly(¢") = ®7(X)
and it generates ker e.». In particular, we have isomorphisms

= QX]/ (27(X)) — Q(Q),
Eon  QIX]/ (@7(X)) > Q(CM).

~

Hence the composition
o=¢Ene, QO > QM)
is a field isomorphism and it satisfies o(¢) = ¢*. Moreover, we have the field extensions
Qc Q") c Q)
and
[Q(¢") - Q] = deg(@7(X)) = [Q(¢) : QJ

implies that [Q(¢) : Q(¢")] =1 and so Q(¢") = Q(¢). So we have shown that o € Gal(E/K) with
o(¢) = ¢", as required. Hence

Gal(E/Q) = im p = {m1, T2, T3, T4, T5, T6 }-
In particular, |Gal(E/Q)| = 6 and Gal(E/Q) < Ss. We now want to find the group structure of
im p. Notice that for k,h € {1,2,3,4,5,6} we have
mema(C) = mi(¢") = ¢ = ¢ = m(¢)
for some [ € {1,2,3,4,5,6} such that kh =1 (mod 7). Hence
mpTH = T, where kh =1 (mod 7)

and so the bijection B
6:imp— 25, d(m)=F

is a group isomorphism, since

o(mrmn) = ¢(m) = 1 = kh = kh = ¢(my)p(mp)
for all k,h € {1,2,3,4,5,6}. We know that Z; is cyclic and since im p = Z>, we have im p = Cs.
Hence Gal(E/Q) = Cs.
We first find a generator of Gal(E/Q). For this we need an element of order 6. Notice that 73
satisfies

(LT 03 May 02 M6 T, o4 Ta o5 T el
and so Gal(E/Q) is generated by o = m3. The subgroups of a finite cyclic group correspond to the
divisors of the order of the group. Hence for the divisor graph

6
VAN
2 3
NS
1
we have the subgroup inclusions graph
{1p} = (0%
7 <
(%) (0%)
X 7



corresponding to the intermediate fields inclusion graph

E
C N
JolCa! JolCael
N C
Q



