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Time: 14.00-19.00. You may look at your personal notes from the course, the lecture notes, and the course
book. Please write your answers in English or in Swedish. Total is 40 points, of which you need 18 points
for grade 3, 25 for grade 4, and 32 for grade 5.

1. (10 pt) Let S3 be the set of permutations (i.e., bijections) on {1, 2, 3}.
(a) Show that (S3, ◦) is a group, where the group operation ◦ is the composition of permutations.

We need to check the associativity, unit law and inverses. Composition is associative, and the
identity permutation is the unit, and permutations have inverse permutations.

(b) Is S3 abelian? Justify your answer.

No. For example we have (1, 2) ◦ (2, 3) = (1, 2, 3) 6= (1, 3, 2) = (2, 3) ◦ (1, 2).

(c) Find all subgroups of S3.

S3 has the following 6 subgroups. {e}, {e, (1, 2)}, {e, (2, 3)}, {e, (1, 3)}, {e, (1, 2, 3), (1, 3, 2)}, S3

(d) Find all quotient groups of S3.

Among the subgroups of S3, the normal subgroups are {e}, {e, (1, 2, 3), (1, 3, 2)} and S3. The quo-
tients by these are S3/{e} ∼= S3, S3/{e, (1, 2, 3), (1, 3, 2)} ∼= Z2, and S3/S3

∼= {e} respectively.

(e) Is S3 solvable? Justify your answer.

Yes. The normal series {e} E {e, (1, 2, 3), (1, 3, 2)} E S3 has factors {e, (1, 2, 3), (1, 3, 2)}/{e} ∼= Z3

and S3/{e, (1, 2, 3), (1, 3, 2)} ∼= Z2 which are abelian. Thus it is a solvable series for S3.

(f) Show that S3 is isomorphic to a quotient of the group G which has the following presentation by
generators and relations:

G = 〈b, c | bcb = cbc〉.

The map G → S3 given by b 7→ (1, 2), c 7→ (2, 3) is a well-defined group homomorphism since
the relation (1, 2)(2, 3)(1, 2) = (1, 3) = (2, 3)(1, 2)(2, 3) is satisfied in S3. It is surjective since the
elements (1, 2), (2, 3) generate S3:

S3 = {e, (1, 2), (2, 3), (1, 3), (1, 2, 3), (1, 3, 2)} = {e, (1, 2), (2, 3), (1, 2)(2, 3)(1, 2), (1, 2)(2, 3), (2, 3)(1, 2)}.

By the first isomorphism theorem, S3 is isomorphic to the quotient of G by the kernel of this map.

2. (5 pt) Classify all groups of order 33. Justify your answer.

Suppose G is a group of order 33. The prime decomposition of 33 is 3 · 11. By the first Sylow theorem,
G contains a subgroup of order 3 and 11 each, which are Sylow subgroups. The groups of prime order
are cyclic, so the Sylow 3-subgroup, say H of G is (isomorphic to) Z3 and the Sylow 11-subgroup of G,
say N is Z11.



By the second Sylow theorem, the number of Sylow 3-subgroups has to divide |G| = 33 and one modulo
3. The only possibility is that there is a unique Sylow 3-subgroup. Similarly, the number of Sylow
11-subgroups of G is one. It follows that both Sylow subgroups H,N are normal subgroups of G.

Now note that H ∩N = {e} since the orders of the nontrivial elements in H (resp., N) are 3 (resp., 11).
By the second isomorphism theorem, we need to have HN = G. We conclude G = HN = H × N ∼=
Z3 × Z11

∼= Z33.

3. (5 pt)

(a) Does the element X3 − 3X + 9 ∈ Q[X] generate a prime ideal in Q[X]? Is the ideal maximal?
Justify your answers.

(b) Does the element X3−3X+9 ∈ Z[X] generate a prime ideal in Z[X]? Is the ideal maximal? Justify
your answers.

We claim that f = X3 − 3X + 9 is irreducible over Z. By Gauss’ lemma, f is then irreducible over
Q. Since Z[X] and Q[X] are UFD, this will imply that the ideal generated by f is prime.

Since Q[X] is a PID, the prime ideal is maximal, while for Z[X] the ideal (f) is properly contained
in, for example, (f, 2) < Z[X], thus is not maximal.

Now we prove the claim. Suppose for contradiction f = gh over Z where neither of g, h is a constant
polynomial. Then X3 − 3X + 9 = X3 −X + 1 ∈ Z2[X] would have the same decomposition into g
and h. Since f is monic, g and h are monic so remain non-constant over Z2. But since 0 and 1 (the
only elements in Z2) are not roots of X3 −X + 1, the element X3 −X + 1 ∈ Z2[X] is irreducible,
a contradiction.

(c) Does the element X3 − 3X + 9 ∈ Z7[X] generate a prime ideal in Z7[X]? Is the ideal maximal?
Justify your answers.

The element 1 ∈ Z7 is a root of X3 − 3X + 9 since 13 − 3 + 9 = 7 = 0 ∈ Z7. Thus, X3 − 3X + 9 is
reducible over Z7. Since Z7[X] is a PID, this implies X3− 3X + 9 generates an ideal that is neither
prime nor maximal.

4. (5 pt) Let R be a commutative ring and suppose the set R \R× is an ideal in R.

(a) Prove that the characteristic of R is either zero or a power of a prime.

Let R be as above and suppose for contradiction that the characteristic of R is (not zero and is)
divisible by two prime numbers p 6= q. Consider the ideals (p) and (q) in R (where p = p1R and
q = q1R are elements in R). Since p, q are coprime, there is k,m such that pk+qm = 1, so the ideal
generated by p and q is R. It follows that either (p) or (q) is not contained in the ideal I := R \R×.
However, any proper ideal of R is contained in R \ R×; otherwise it contains some u ∈ R× but
uR = R. Therefore, we have either (p) = R or (q) = R, which contradicts the assumption that p, q
divide the characteristic of R.

(b) Given n, either zero or a prime power, can you find a ring R as above such that charR = n?

Yes. If R is a field then R \R× = {0} is an ideal, so for n = 0 we can take any field of characteristic
zero. For n = pr for a prime p and r ∈ N , the ring R = Z/pr satisfy the condition since R\R× = pR
is an ideal in R.

5. (5 pt) Let K be a field, f ∈ K[X] be an irreducible polynomial, and let α, β ∈ K \ K be such that
f(α) = f(β) = 0.

(a) Is the field extension K ⊆ K(α) finite? Justify your answer.

Yes. Since α is a root of f , the degree [K(α) : K] is bounded by the degree of f .



(b) Show that K(α) is K-isomorphic to K(β). (Construct a K-isomorphism K(α)→ K(β).)

Since f is irreducible, it is the minimal polynomial of both α and β. Thus, we have the K-
isomorphism φ : K[X]/(f) ∼= K(α) sendingX to α and similarly theK-isomorphism ψ : K[X]/(f) ∼=
K(β) sending X to β. Then ψ ◦ φ−1 is a K-isomorphism from K(α) to K(β).

(c) Can the group AutK(K(α)) be infinite? Can it be trivial? Justify your answers.

No and yes.

Since a K-automorphism on K(α) is determined by it s values on α. But α must be sent to a root of
f in K(α). Thus the order of AutK(K(α) is bounded by the degree of f which is finite. Moreover,
if f has only one root, namely α, in K(α) then AutK(K(α)) is trivial. An example of the latter is
when f = X3 − 3 and K = Q. See Proplem 7.

6. (5 pt) Let E be a finite field and let K ⊆ E be a subfield. Prove or disprove: the extension K ⊆ E is

(a) normal;

(b) separable.

Let q be the order of E. Since E× = E \ {0} is cyclic, any nonzero element of E is a root of Xq−1 − 1 ∈
K[X] and all elements of E are roots of X(Xq−1− 1) = Xq −X =: f . For degree reason, it follows that
E consists exactly of the roots of f ∈ K[X]. So E is a splitting field of f over K, that is, K ⊆ E is
normal. Again, for degree reason, the polynomial f has q distinct roots and is separable. Thus K ⊆ E
is separable.

7. (5 pt) Consider the polynomial f = X3 − 3 ∈ Q[X] and let E be its splitting field (over Q).

(a) Prove that Q ⊆ E is Galois.

Over Q ⊂ C, we have f = (X − 3
√

3)(X − 3
√

3ζ)(X − 3
√

3ζ2) where ζ is a third root of 1 in C (we
can let ζ = e2πi/3). Thus E is a splitting field of a separable polynomial, thus Galois.

(b) Compute the Galois group Gal(E/Q).

Since E is generated over Q by a = 3
√

3, b = aζ, c = aζ2, a Q-automophism on E is determined
by its values on a, b, c. It also needs to send a, b, c, which are the roots of f , to the roots of
f . Therefore, we can view the Q-automorphisms as permuataions on the set {a, b, c} ∼= {1, 2, 3},
providing G := Gal(E/Q) ↪→ S3. Since the order of G is [E : Q] = [E : Q(a)][Q(a) : Q] = 2 ·3 = |S3|
we have in fact G ∼= S3.

(c) Find all subfields Q ⊆ F ⊆ E.

By the Galois correspondence, such subfields are exactly the fixed fields of the subgroups of G which
we found in Problem 1 (c). They are E,Q(b),Q(a),Q(c),Q(ζ),Q.

(d) Which of these F are Galois over Q, and what are their Galois groups Gal(F/Q)?

By the Galois correspondence, these F are exactly the fixed fields of the normal subgroups of G and
the Galois groups are the quotients groups. We found these in Problem 1(d). They are E,Q(ζ),Q
and the corresponding Galois groups S3,Z2, {e} respectively.


