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Time: 8.00-13.00. Notes, books or electronic devices are not allowed. Please write your answers in English
or in Swedish. Total is 40 points, of which you need 18 points for grade 3, 25 for grade 4, and 32 for grade
5.

1. (10 pt) Let G be a group and let H ≤ G be a subgroup.

(a) Consider the set of left cosets
G/H = {gH | g ∈ G}.

Give an example of a G-action on G/H. Justify your answer.

Answer: The assignment
a(gH) = (ag)H

for a ∈ G and gH ∈ G/H is a G-action since

eG(gH) = (eGg)H = gH

and for a, b ∈ G

b(a(gH)) = b((ag)H)) = (b(ag))H = ((ba)g)H = (ba)(gH)

by the associativity of the group structure on G.

(b) When is H said to be a normal subgroup?

Answer: When gH = Hg for all g ∈ G.

(c) Show that G/H is a group under the operation (gH, g′H) 7→ gg′H = (gg′)H if and only if H is
normal.

Answer: The operation is well-defined iff gg′H = ghg′H for all g, g′ ∈ G and h ∈ H. The latter
equation holds iff gg′h′ = ghg′ for some h′ ∈ H iff g′h′ = hg′ for some h′ ∈ H iff g′H = Hg′.
Therefore the operation (gH, g′H) 7→ gg′H = (gg′)H is well-defined if and only if H is normal, and
it remains to show that the operation satisfies the group axioms:

1. (g1Hg2H)g3H = (g1g2)Hg3H = ((g1g2)g3)H = (g1(g2g3))H = g1H(g2g3)H = g1H(g2Hg3H)
for g1, g2, g3 ∈ G, by the associativity of G ;

2. Letting e ∈ G be an identity element in G, the element eH = H ∈ G/H is an identity element,
since eHgH = egH = gH = geH = gHeH for all g ∈ G;

3. Given each gH ∈ G/H, the element g′H ∈ G/H is its inverse if g′ ∈ G is an inverse of g ∈ G,
which exists since G is a group.



(d) Show that, if ϕ : G → L is a group homomorphism, then Kerϕ is a normal subgroup of G.

Answer: We need gKerϕ = Kerϕg for g ∈ G. By symmetry, we only show “⊆”.

For h ∈ Kerϕ and g ∈ G, we want to find h′ ∈ Kerϕ such that gh = h′g. But since ϕ(gh) =
ϕ(g)ϕ(h) = ϕ(g), we have

e = ϕ(g)ϕ(g−1) = ϕ(gh)ϕ(g−1) = ϕ(ghg−1)

so ghg−1 ∈ Kerϕ, and we can let h′ = ghg−1.

(e) State the first isomorphism theorem for groups.

Answer: See notes/textbook.

2. (5 pt) Give a presentation of the group (Z/2Z)× (Z/2Z) by generators and relations.

Answer:

F{a,b}/N(a2, b2, aba−1b−1)

or

⟨a, b | a2 = e = b2, ab = ba⟩

3. (5 pt) A Euclidean ring is an integral domain R which admits a map

R \ {0} → Z≥0, a 7→ ||a||

satisfying

1. for a, b ∈ R, if b divides a, then ||b|| ≤ ||a||;
2. for a, b ∈ R, if b ̸= 0 does not divide a, then there is q, r ∈ R with ||r|| < ||b|| such that a = bq + r

holds.

(a) Prove that a Euclidean ring is a principal ideal domain (PID).

Answer: Let I be an ideal in a Euclidean ring R. We want to find b ∈ I such that I = (b). We
claim we can take b ∈ I to be such that ||b|| = min||I||.
If there is a ∈ I that is not divisible by b then item 2 above implies a− bq = r ∈ I for some ||r|| < b,
but this contradicts ||b|| = min||I||. This proves the claim.

(b) Is Q[X,Y ] a Euclidean ring? Justify your answer.

Answer: No, we claim I = (X,Y ) is not a principal ideal, which implies R = Q[X,Y ] is not a PID
and is not a Euclidean ring by (a). Suppose I = (f) for some f ∈ I. Then since X,Y ∈ I, f divides
X and Y . So f has to belong to Q, but f is also not zero. It follows that f is invertible in R and
that I = R which contradicts for example that 1 ̸∈ I.

Turn to the next page!



4. (5 pt) Given a ring R and two rings S, T that contain R as a subring, an R-homomorphism ϕ : S → T
is a ring homomorphism such that ϕ(r) = r for r ∈ R.

(a) Can you give two (different) examples of surjective R-homomorphisms R[X] → C? If yes, give the
examples; if not, justify.

Answer: Letting ϕa, for a ∈ C to be the R-homomorphism sending X to a, the ϕa for a ∈ C \ R
are (distinct and) exactly all surjective R-homomorphisms R[X] → C.
So two examples can be ϕi and ϕi+1, for example.

More explanation: An R-homomorphism ϕ : R[X] → C is a R-linear map if we view R[X] and C
as R-vectorspaces with bases {Xn} and {1, i} respectively. Moreover, being a ring homomorphism,
the values ϕ(Xn) are determined by the value ϕ(X) ∈ C. The image of ϕ is the subspace R+Rϕ(X)
in C and is equal to C if and only if Rϕ(X) ̸= R if and only if ϕ(X) ∈ C \ R.

(b) Can you give two (different) examples of injective R-homomorphisms R[X] → C. If yes, give the
examples; if not, justify.

Answer: An R-homomorphism ϕ : R[X] → C is a R-linear map if we view R[X] and C as R-
vectorspaces. There is no such injective linear map because the domain R[X] has a (R)-dimension
strictly bigger than that of C.

5. (5 pt) Consider the polynomial f = X33 −X ∈ F3[X] and let E be its splitting field (over F3).

(a) Is f irreducible?

Answer: No, for example X divides f in F3[X].

(b) Compute the group AutF3
(E) of F3-automorphisms on E.

Answer: The group AutF3
(E) is isomorphic to Z/3.

More precisely, we have AutF3
(E) = {IdE , σ, σ2} = ⟨σ⟩ where σ : α 7→ α3 and σ3 = IdE .

More explanation: See the solution to problem 19.2 in the exercise collection.

(c) Find all subfields of E.

Answer: F3 and E are the only subfields of E.

More explanation: The field E by construction contains F3 as a subfield and any other subfield,
say K, needs to contain this F3. Moreover, since K ⊂ E, the order of E needs to be a power of
|K|. But E has 33 = 27 elements, so either K = E or |K| ≤ 3. In the latter case we have to have
K = F3.

Alternatively, since f is separable and E over F3 is Galois, the fields between F3 and E corresponds
to the subgroups of the Galois group. The latter is isomorphic to Z/3 by (b) which has only the
trivial subgroup and itself. The corresponding fields are F3 and E.



6. (5 pt) Show that, if E ⊃ R is finite Galois, then [E : R] = 2r for some r. (Use the Galois theorem, the
first Sylow theorem for p = 2 and the fact that an odd degree polynomial has a real root.)

Answer: Let G = Gal(E/R) and let H ≤ G be a Sylow 2-subgroup. By the Galois theorem, we have
an extension R ⊆ EH ⊆ E with [EH : R] odd. So for α ∈ EH , the minimal polynomial of α over R is
of odd degree. But every odd degree polynomial has a zero in R, by the intermediate value theorem, so
α ∈ R. It follows EH = R. By the Galois theorem, we have H = G and thus |G| = |H| is a power of 2.

7. (5 pt) Let E ⊃ K be a field extension where charK = 0. Recall that E ⊃ K is said to be solvable by
radicals if there exist field extensions

K = F0 ⊂ F1 ⊂ · · · ⊂ Fl = E

such that, for each i, we have Fi = Fi−1(αi) with αmi
i ∈ Fi−1 for some mi ∈ N.

(a) Show that charE = 0.

Answer: Since charK = 0, we have n1K ̸= 0 for all n ∈ Z. But since E ⊃ K, we have 1E = 1K
and n1E = n1K ̸= 0 for all n ∈ Z. The latter says charE = 0.

(b) If E is the splitting field of some f ∈ K[X] with deg f = 2, then is E solvable over K? Justify your
answer.

Answer: Yes. Since deg f = 2, we have E = K[α] for any root α ∈ K of f . If we write
f = aX2 + bX + c for a, b, c ∈ K, then α = −b±γ

2a for some γ ∈ K with γ2 = b2 − 4ac ∈ K. So γ is
radical and E = K[α] = K[γ] is solvable over K.

Alternatively, since [E : K] ≤ 2 and E is Galois over K, the Galois group is either trivial or S2 and
thus solvable. It follows E is solvable over K.

(c) If [E : K] = 2, then is E solvable over K? Justify your answer.

Answer: Yes. If [E : K] = 2 then for any α ∈ E \K we have E = K[α]. Let f be the minimal
polynomial for α over K. We have deg f = 2.

Then the other root of f belongs to K[α], so E is the splitting field of f over K. Now the claim
follows from (b). (More concretely, writing f = X2 + bX + c for b, c ∈ K, we have α ∈ −b±γ

2 where
γ2 = b2 − 4c ∈ K. Since K[α] = K[γ] and γ is radical over K, the extension K[α] ⊃ K is solvable.)


