Exam 2017-03-08; SOLUTIONS

1. We use the same method of presentation as in MNZ p. 218 (top). (a).

$$\begin{pmatrix} 24 & 15 & -25 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \end{pmatrix} \rightarrow \begin{pmatrix} -6 & 15 & 5 & 2 \\ 1 & 0 & 0 & 0 \\ -2 & 1 & 2 & 0 \\ 0 & 0 & 1 & \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 5 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & -5 & 2 & 1 \\ 1 & -3 & 1 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} -1 & 0 & 0 & 2 \\ 1 & 0 & 5 & 0 \\ 0 & -5 & 2 & 0 \\ 1 & -3 & 6 & 0 \end{pmatrix}$$

Answer: $(x, y, z) = (-2 + 5s, -5t + 2s, -2 - 3t + 6s), t, s \in \mathbb{Z}.$

(b). There are no solutions, since gcd(21, 14, -56) = 7 does not divide 2.

2. (a) The prime factorization of 125 is $125 = 5^3$.

Set $f(X) = X^3 + X^2 + 3 \in \mathbb{Z}[X]$. By testing all five elements of \mathbb{Z}_5 , we find that there are exactly two solutions to $f(X) \equiv 0 \mod 5$, namely $X \equiv 1$ and $X \equiv 2 \mod 5$. We have $f'(X) = 3X^2 + 2X$ and $f'(1) = 5 \equiv$ $0 \mod 5$ and $f'(2) = 16 \equiv 1 \mod 5$. Hence by Hensel's Lemma, $2 \mod 5$ lifts to a unique solution modulo 25 and then to a unique solution mod 125, whereas 1 mod 5 lifts to either 0 or 5 solutions mod 25. We compute $f(1) = 5 \not\equiv 0 \mod 25$; hence in fact $1 \mod 5$ lifts to 0 solutions mod 25. It follows that the given equation in \mathbb{Z}_{125} has exactly one solution, namely the unique lift of the solution 2 mod 5. To determine this lift, let $t \mod 5$ be the unique solution to $f'(2)t \equiv -f(2)/5 \mod 5$, i.e. $t \equiv -15/5 = -3 \mod 5$; then the formula in Hensel's Lemma says that $b=2+5\cdot(-3)=-13\equiv 12$ is the unique lift mod 25 of the solution 2 mod 5. Next, to determine the lift modulo 125, let t mod 5 be the unique solution to $f'(12)t \equiv -f(12)/5^2 \mod 5$, i.e. $t = 75 \equiv$ $0 \mod 5$; then the formula in Hensel's Lemma says that $b = 12 + 25 \cdot 0 \equiv$ 12 mod 125 is the unique lift mod 125 of the solution 12 mod 25.

Answer: There is exactly one zero, namely $\overline{12}$.

(b) The prime factorization of 221 is $221 = 13 \cdot 17$. Note that $X^2 - 3X = (X - 3)X$ in $\mathbb{Z}[X]$; hence we can immediately solve the congruence equation modulo 13 and modulo 17. Indeed, if $(X - 3)X \equiv 0 \mod 13$ then X - 3 or X must be divisible by 13, i.e. $X \equiv 0$ or $3 \mod 13$. Similarly, the two solutions to $(X - 3)X \equiv 0 \mod 17$ are $x \equiv 0$ or $3 \mod 17$.

Now we use the Chinese Remainder Theorem to determine all the solutions mod 221. We first seek $a,b\in\mathbb{Z}$ so that 13a+17b=1; we find $a=4,\ b=-3$ by simple testing (or using Euclid's Algorithm). From this we find the number $13\cdot 4=52$ which is $\equiv 0 \bmod 13$ and $\equiv 1 \bmod 17$, and we also find the number $17\cdot (-3)=-51$ which is $\equiv 1 \bmod 13$ and $\equiv 0 \bmod 17$. Hence for any $x,y\in\mathbb{Z}$, the unique integer mod 221 which is $\equiv x \bmod 13$ and $\equiv y \bmod 17$ equals 52x-51y. Applying this to the solutions of the given equation mod 13 and mod 17, we see that there are the following four solutions mod 221:

$$0 \cdot 52 + 0 \cdot (-51) = 0;$$
 $3 \cdot 52 + 0 \cdot (-51) = 156;$ $0 \cdot 52 + 3 \cdot (-51) = 153 \equiv 68;$ $3 \cdot 52 + 3 \cdot (-51) = 3.$

Answer: $\overline{0}$, $\overline{3}$, $\overline{68}$ and $\overline{156}$.

3. (a) 607 is a prime, while $435 = 3 \cdot 5 \cdot 29$, and we compute

$$\begin{split} & \left(\frac{435}{607}\right) = \left(\frac{3}{607}\right) \cdot \left(\frac{5}{607}\right) \cdot \left(\frac{29}{607}\right) = \left(-\left(\frac{607}{3}\right)\right) \cdot \left(\frac{607}{5}\right) \cdot \left(\frac{607}{29}\right) \\ & = -\left(\frac{1}{3}\right) \cdot \left(\frac{2}{5}\right) \cdot \left(\frac{-2}{29}\right) = (-1) \cdot (-1) \cdot \left(\frac{2}{29}\right) = (-1) \cdot (-1) \cdot (-1) = -1. \end{split}$$

Answer: No.

(b) Since $435 = 3 \cdot 5 \cdot 29$, $\overline{616}$ is a square in \mathbb{Z}_{435} iff it is a square in \mathbb{Z}_3 and in \mathbb{Z}_5 and in \mathbb{Z}_{29} . We compute:

$$\left(\frac{616}{3}\right) = \left(\frac{1}{3}\right) = 1;$$

$$\left(\frac{616}{5}\right) = \left(\frac{1}{5}\right) = 1;$$

$$\left(\frac{616}{29}\right) = \left(\frac{7}{29}\right) = \left(\frac{29}{7}\right) = \left(\frac{1}{7}\right) = 1.$$

Hence $\overline{616}$ is a square in each of \mathbb{Z}_3 , \mathbb{Z}_5 and \mathbb{Z}_{29} , and hence also in \mathbb{Z}_{435} .

Answer: Yes.

4. (a) p = 29 is a prime and $\phi(p) = p - 1 = 28 = 2^2 \cdot 7$. Let h be the order of $\overline{2}$ in \mathbb{Z}_{29} . By Fermat's Little Theorem, $\overline{2}^{28} = \overline{1}$; hence $h \mid 28$. Therefore, if $h \neq 28$, then we must have $h \mid 14$ or $h \mid 4$ and this would imply $\overline{2}^{14} = \overline{1}$ or $\overline{2}^4 = \overline{1}$. Hence if we check that $\overline{2}^{14} \neq \overline{1}$ and $\overline{2}^4 \neq \overline{1}$ then it follows that h = 28 and therefore that $\overline{2}$ is a primitive root in \mathbb{Z}_{29} . We compute in \mathbb{Z}_{29} :

$$\begin{aligned} \overline{2}^4 &= \overline{16}; \\ \overline{2}^6 &= \overline{64} = \overline{6}; \\ \overline{2}^8 &= (\overline{16})^2 = \overline{256} = \overline{24} = \overline{-5}; \\ \overline{2}^{14} &= \overline{2}^6 \cdot \overline{2}^8 = \overline{6} \cdot (-\overline{5}) = -\overline{30} = -\overline{1}. \end{aligned}$$

Hence h = 28, and we have proved that $\overline{2}$ is a primitive root in \mathbb{Z}_{29} .

(b) Note that if $x \in \mathbb{Z}_{29}$ satisfies $x^{64} = \overline{16}$ then $x \neq \overline{0}$ and thus $x \in \mathbb{Z}_{29}^{\times}$. Hence since $\overline{2}$ is a primitive root, there is some $j \in \mathbb{Z}$ (uniquely determined mod 28) such that $x = \overline{2}^{j}$. Now:

$$x^{64} = \overline{16} \Leftrightarrow (\overline{2}^{j})^{64} = \overline{2}^{4} \Leftrightarrow \overline{2}^{64j} = \overline{2}^{4} \Leftrightarrow 64j \equiv 4 \mod 28 \Leftrightarrow 16j \equiv 1 \mod 7$$
$$\Leftrightarrow 2j \equiv 1 \mod 7 \Leftrightarrow 4 \cdot 2j \equiv 4 \mod 7 \Leftrightarrow j \equiv 4 \mod 7$$
$$\Leftrightarrow j \equiv 4 \text{ or } 11 \text{ or } 18 \text{ or } 25 \mod 28.$$

Hence our equation has exactly four zeros in \mathbb{Z}_{29} , namely $\overline{2}^4$, $\overline{2}^{11}$, $\overline{2}^{18}$ and $\overline{2}^{25}$. We compute:

$$\overline{2}^{4} = \overline{16};
\overline{2}^{7} = \overline{128} = \overline{12};
\overline{2}^{11} = \overline{2}^{4} \cdot \overline{2}^{7} = \overline{16} \cdot \overline{12} = \overline{192} = \overline{18};
\overline{2}^{18} = \overline{2}^{11} \cdot \overline{2}^{7} = \overline{18} \cdot \overline{12} = \overline{216} = \overline{13};
\overline{2}^{25} = \overline{2}^{18} \cdot \overline{2}^{7} = \overline{13} \cdot \overline{12} = \overline{156} = \overline{11}.$$

Answer: $\overline{11}$, $\overline{13}$, $\overline{16}$, $\overline{18}$.

5. The equation is homogeneous; hence it suffices to prove that there does not exist any *primitive* solution, i.e. a solution with gcd(x, y, z) = 1. (Detailed proof of this claim: Assume that $\langle x, y, z \rangle$ is any integer solution to the equation, $\langle x, y, z \rangle \neq \langle 0, 0, 0 \rangle$. Let $d = gcd(x, y, z) \in \mathbb{Z}^+$. Then $\langle x/d, y/d, z/d \rangle$ is a primitive solution to the equation! Hence, if there does not exist any primitive solution to the equation, then there does not exist any integer solution at all except $\langle x, y, z \rangle = \langle 0, 0, 0 \rangle$.)

Assume now that $\langle x,y,z\rangle$ is a primitive solution to the equation. Considering the equation modulo 7 we then have $5x^3\equiv 11z^3 \mod 7$, or equivalently (multiplying by $\overline{5}^{-1}=\overline{3}\in\mathbb{Z}_7^{\times}$): $x^3\equiv -2z^3 \mod 7$. Assume first that $7\nmid z$. Then also $x^3\equiv -2z^3\not\equiv 0 \mod 7$ and thus $7\nmid x$. Therefore, by Fermat's Little Theorem, $x^6\equiv z^6\equiv 1 \mod 7$. Hence if we raise the relation $x^3\equiv -2z^3 \mod 7$ to the power 2, we obtain $1\equiv (-2)^2 \mod 7$, i.e. $1\equiv 4 \mod 7$. This is a contradiction! Hence we must in fact have $7\mid z$. Then $x^3\equiv -2z^3\equiv 0 \mod 7$ and thus $7\mid x$. It follows that both $5x^3$ and $11z^3$ are divisible by 7^3 , and thus from the original equation we have $7y^3\equiv 11z^3-5x^3\equiv 0 \mod 7^3$. This implies $y^3\equiv 0 \mod 7^2$ and hence $7\mid y$. Hence $x\equiv y\equiv z\equiv 0 \mod 7$, contradicting the assumption that $\langle x,y,z\rangle$ is a primitive solution. Hence there are no primitive solutions to the equation!

6. (a). We follow the algorithm from Lecture 12. Note that if we set d=7, $u_0=0$, $v_0=1$, then $\sqrt{7}=\frac{u_0+\sqrt{d}}{v_0}$ and $v_0\mid d-u_0^2$. Next we compute a_j for $j\geq 0$ and u_j,v_j for $j\geq 1$ using the recursion formulas $a_j=\left[\frac{u_j+\sqrt{d}}{v_j}\right]$, $u_{j+1}=a_jv_j-u_j$, $v_{j+1}=(d-u_{j+1}^2)/v_j$. We get:

j	0	1	2	3	4	5
u_j	0	2	1	1	2	2
v_{j}	1	3	2	3	1	3
a_j	2	1	1	1	4	

Thus $\sqrt{7} = \langle 2, \overline{1, 1, 1, 4} \rangle$.

We compute the convergents using the formulas $h_{-2} = 0$, $h_{-1} = 1$, $h_j = a_j h_{j-1} + h_{j-2}$ and $k_{-2} = 1$, $k_{-1} = 0$, $k_j = a_j k_{j-1} + k_{j-2}$.

j							4
a_{j}			2	1	1	1	4
h_j	0	1	2	3	5	8	
$a_j \\ h_j \\ k_j$	1	0	1	1	2	3	

Answer: $\sqrt{7} = \langle 2, \overline{1, 1, 1, 4} \rangle$, and the first four convergents are $\frac{h_0}{k_0} = \frac{2}{1}, \frac{h_1}{k_1} = \frac{3}{1}, \frac{h_2}{k_2} = \frac{5}{2}, \frac{h_3}{k_2} = \frac{8}{3}.$

(b). Since $\sqrt{7} = \langle 2, \overline{1, 1, 1, 4} \rangle$ with period r = 4, the first solution is given by $\langle x, y \rangle = \langle h_{r-1}, k_{r-1} \rangle = \langle 8, 3 \rangle$. Computing $(8 + 3\sqrt{7})^2 = 127 + 48\sqrt{7}$ and $(8 + 3\sqrt{7})^3 = (127 + 48\sqrt{7})(8 + 3\sqrt{7}) = 2024 + 765\sqrt{7}$ we find two more solutions: $\langle 127, 48 \rangle$ and $\langle 2024, 765 \rangle$.

Answer: $\langle 8, 3 \rangle$ and $\langle 127, 48 \rangle$ and $\langle 2024, 765 \rangle$.

(c). **Answer:** No, since $\langle 2, \overline{1, 1, 1, 4} \rangle$ has even period r = 4.

7. (This is MNZ p. 192, Problem 20.)

Recall that $\Omega(n) := \sum_{p|n} \operatorname{ord}_p(n)$; hence $\Omega(nm) = \Omega(n) + \Omega(m)$ for any $n, m \in \mathbb{Z}^+$, and so $\lambda(nm) = \lambda(n)\lambda(m)$ for any $n, m \in \mathbb{Z}^+$, i.e. λ is totally multiplicative as desired. Now set $F(n) := \sum_{d|n} \lambda(d)$. Then F is multiplicative by Theorem 2 from Lecture #8 (= Thm 4.4 in MNZ = Thm. 16.2 in LL). Note also $F(p^{\alpha}) = \sum_{j=0}^{\alpha} (-1)^j$, and this is 1 if α is even but 0 if α is odd. Hence, using the fact that F is multiplicative, for an arbitrary positive integer $n = \prod_p p^{\alpha}$ we have

$$F(n) = \prod_{p} F(p^{\alpha}) = \prod_{p} \begin{cases} 1 & \text{if } \alpha \text{ is even} \\ 0 & \text{if } \alpha \text{ is odd} \end{cases} = \begin{cases} 1 & \text{if } n \text{ is a perfect square} \\ 0 & \text{otherwise.} \end{cases}$$

(In the last step we used the fact that $n = \prod_p p^{\alpha}$ is a perfect square iff the exponent α is even for every prime p.)

8. (This is MNZ, problem 42 on p. 74.)

For any positive integer n we have

$$\frac{n}{\phi(n)} = \frac{1}{\prod_{p|n} (1 - p^{-1})} = \prod_{p|n} \frac{p}{p-1},$$

and $\phi(n) \mid n$ iff the above ratio is an integer. Assume now that this holds. Let A be the set of primes dividing n; thus now $\prod_{p \in A} \frac{p}{p-1} \in \mathbb{Z}$, i.e.

(1)
$$\prod_{p \in A} (p-1) \mid \prod_{p \in A} p$$

Assume that there is a prime q > 3 in the set A. Then q - 1 divides $\prod_{p \in A} p$; but clearly $\operatorname{ord}_2(\prod_{p \in A} p) \leq 1$; hence q - 1 = 2u for some odd integer $u \geq 3$. Let q' be a prime factor of u; then 2 < q' < q, and (1) implies that $q' \in A$. But then (1) implies $\operatorname{ord}_2(\prod_{p \in A} p) \geq 2$, a contradiction! Hence A cannot contain any prime q > 3. We also note that if $3 \in A$ then (1) forces $2 \in A$. Hence the only possibilities for A are: $A = \emptyset$, $A = \{2\}$ and $A = \{2, 3\}$. Hence the only possibilities for n are: n = 1 or 2^j or $2^j 3^k$ with $j, k \in \mathbb{Z}^+$. Conversely one verifies that $\phi(n) \mid n$ holds for all these n.