TENTAMEN - ELEMENTARY NUMBER THEORY 2019/03/21

JULIAN KÜLSHAMMER

- 1. (i) Determine all (integer) solutions to the linear Diophantine equation 111x+81y-45z = 15.
 - (ii) Determine all continued fractions $\langle a_0, a_1, \ldots, a_n \rangle$ whose value $K(\langle a_0, a_1, \ldots, a_n \rangle)$ is equal to $\frac{239}{35}$.
- **Solution 1**. (i) With the substitution z' = -z + 2x + y, the solutions to the equation

$$111x + 81y - 45z = 15$$

are the same as the solutions to the equation

$$21x + 36y + 45z' = 15$$
.

Performing the substitution x' = x + y + 2z', we obtain the equation

$$21x' + 15y + 3z' = 15$$
.

Again substituting z'' = z' + 7x' + 5y we obtain

$$3z'' = 15$$
.

Therefore z'' = 5, and x' = s, y = t are free parameters. Substituting back we obtain

$$z' = z'' - 7x' - 5y = 5 - 7s - 5t$$
$$x = x' - y - 2z' = -10 + 15s + 9t$$

Again substituting back we obtain

$$z = 2x + y - z' = -25 + 37s + 24t$$
.

Summarising one (of the many) possible parametrisations of the solution set is

$$x = -10 + 15s + 9t$$
$$y = t$$
$$z = -25 + 37s + 24t$$

with $s, t \in \mathbb{Z}$.

(ii) We use the Euclidean algorithm to obtain

$$239 = 6 \cdot 35 + 29$$
$$35 = 1 \cdot 29 + 6$$
$$29 = 4 \cdot 6 + 5$$
$$5 = 1 \cdot 5 + 1$$
$$5 = 5 \cdot 1$$

Therefore, $\frac{239}{35} = K(\langle 6, 1, 4, 1, 5 \rangle) = K(\langle 6, 1, 4, 1, 4, 1 \rangle)$. Since every rational number can be expressed as the value of a continued fraction in exactly two different ways, these are all continued fraction expansions of $\frac{239}{35}$.

2. Solve the following system of linear congruences:

$$x \equiv 2 \mod 12$$

 $x \equiv 6 \mod 10$
 $x \equiv 11 \mod 45$

Solution 2. By the Chinese Remainder Theorem, the system of linear congruences is equivalent to the system

$$x \equiv 2 \mod 4$$

$$x \equiv 2 \mod 3$$

$$x \equiv 6 \mod 2$$

$$x \equiv 6 \mod 5$$

$$x \equiv 11 \mod 9$$

$$x \equiv 11 \mod 5$$

Using that $2 \equiv 6 \mod 2$, $2 \equiv 11 \mod 3$ and $6 \equiv 11 \mod 5$, the system is equivalent to

$$x \equiv 2 \mod 4$$

 $x \equiv 1 \mod 5$
 $x \equiv 2 \mod 9$

We solve the system inductively. It is easy to see that $1 = 1 \cdot 5 - 1 \cdot 4$. Therefore, $5 \equiv 1 \mod 4$, $5 \equiv 0 \mod 5$, $-4 \equiv 1 \mod 5$, $-4 \equiv 0 \mod 4$. It follows that

$$x = 2 \cdot 5 + 1 \cdot (-4) = 6$$

is a number that satisfies $x \equiv 2 \mod 4$ and $x \equiv 1 \mod 50$. In a next step we try to find a number x such that $x \equiv 6 \mod 20$ and $x \equiv 2 \mod 9$. We have that $1 = (-4) \cdot 20 + 9 \cdot 9$. Therefore $6 \cdot 81 + 2 \cdot (-80) = 326 \equiv 146 \mod 180$ is a number that solves the whole system of congruences and all solutions are of the form x = 146 + 180n for $n \in \mathbb{Z}$.

3. Solve the congruence $x^3 + x + 4 \equiv 0 \mod 343$.

Solution 3. Note that $343 = 7^3$. Therefore, we use Hensel's lemma to compute the solutions to the congruence $x^3 + x + 4 \equiv 0 \mod 343$. As a first step, we check by trial and error that $x \equiv 2 \mod 7$ is the unique solution to $x^3 + x + 4 \equiv 0 \mod 7$. We set

$$f(x) = x^3 + x + 4.$$

Then $f'(x) = 3x^2 + 1$. We compute that $f'(2) = 13 \not\equiv 0 \mod 7$. Therefore, there is a unique lift of the solution $x \equiv 2 \mod 7$ to a solution to $f(x) \equiv 0 \mod 49$. This unique solution is of the form 2 + 7t where t is the unique solution fo

$$f'(2)t \equiv -\frac{f(2)}{7} \mod 7.$$

As $f'(2) \equiv -1 \mod 7$ and f(2) = 14, we obtain that t = 2. Therefore $x = 2 + 7 \cdot 2 = 16$ is the unique solution to the congruence $f(x) \equiv 0 \mod 49$. It is clear that $f'(16) \equiv f'(2) \not\equiv 0 \mod 7$, therefore there is a unique solution to $f(x) \equiv 0 \mod 343$. This unique solution is of the form 16 + 49t where t is the unique solution to the congruence

$$f'(16)t \equiv -\frac{f(16)}{49} \mod 7.$$

Since $f'(16) \equiv -1 \mod 7$ and $\frac{f(16)}{49} = \frac{4116}{49} = 84 \equiv 0 \mod 7$, it follows that t = 0 and therefore $16 + 49 \cdot 0 = 16$ is the unique solution to $f(x) \equiv 0 \mod 343$.

- **4.** (i) Show that $\overline{6}$ is a primitive root in $(\mathbb{Z}/11\mathbb{Z})^{\times}$.
 - (ii) How many primitive roots are there in $(\mathbb{Z}/11\mathbb{Z})^{\times}$? Determine all of them.
- **Solution 4.** (i) A primitive root in $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is an element of order $\phi(11) = 11 1 = 10$ in $(\mathbb{Z}/11\mathbb{Z})^{\times}$. Since $10 = 2 \cdot 5$, and (by Fermat's little theorem) the order of every element of $(\mathbb{Z}/11\mathbb{Z})^{\times}$ divides $\phi(11)$, it suffices to show that $6^2 \not\equiv 1 \mod 11$ and $6^5 \not\equiv 1 \mod 11$. We compute that $6^2 = 36 \equiv 3 \not\equiv 1 \mod 11$ and $6^5 = (6^2)^2 \cdot 6 \equiv 9 \cdot 6 \equiv 10 \mod 11$, it follows that the order of $\overline{6}$ is 10 and therefore $\overline{6}$ is a primitive root in $(\mathbb{Z}/11\mathbb{Z})^{\times}$.
 - (ii) There are $\phi(\phi(11)) = \phi(10) = \phi(2)\phi(5) = 1 \cdot 4 = 4$ primitive roots in $(\mathbb{Z}/11\mathbb{Z})^{\times}$. Every element of $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is of the form $\overline{6}^j$ for some $j \in \{0, \dots, 9\}$. The primitive roots are precisely those of the form $\overline{6}^j$ with $\gcd(j, 10) = 1$. The possible j are therefore j = 1, 3, 7, 9. We compute hat $\overline{6}^1 = \overline{6}, \overline{6}^3 = \overline{3 \cdot 6} = \overline{7}, \overline{6}^7 = \overline{5 \cdot 6} = \overline{8}$, and $\overline{6}^9 = \overline{8 \cdot 3} = \overline{2}$. Therefore $\overline{2}, \overline{6}, \overline{7}, \overline{8}$ are the primitive roots in $(\mathbb{Z}/11\mathbb{Z})^{\times}$.
- **5**. Let

$$s \colon \mathbb{N}_1 \to \mathbb{C}, \quad s(n) = \begin{cases} 0 & \text{if there exists a prime number } p \text{ such that } p^2 \,|\, n, \\ 1 & \text{else,} \end{cases}$$

be the characteristic function of the square free numbers.

- (i) Show that s is multiplicative.
- (ii) Compute the Möbius transform $s*\mu$ of s where μ is the Möbius function and * denotes the convolution product.

Solution 5. (i) Let m and n be coprime integers. We have that

$$s(m)s(n) = \begin{cases} 0 & \text{if } p^2|m \text{ or } p^2|n, \\ 1 & \text{else,} \end{cases}$$

and

$$s(mn) = \begin{cases} 0 & \text{if } p^2 | mn \\ 1 & \text{else.} \end{cases}$$

Since $p^2|mn$ if and only if $p^2|m$ or $p^2|n$ since m and n are coprime, it follows that s(m)s(n)=s(mn) and therefore s is multiplicative.

(ii) Since s and μ are both multiplicative, it follows that $s*\mu$ is multiplicative and therefore it suffices to compute $s*\mu$ on prime powers. We obtain that

$$(s * \mu)(p^k) = \sum_{p^m \mid p^k} s(p^m)\mu(p^{m-k}) = \begin{cases} 0 & \text{if } k \ge 3, \\ -1 & \text{if } k = 2, \\ s(p)\mu(1) + s(1)\mu(p) = 1 + (-1) = 0 & \text{if } k = 1, \\ 1 & \text{if } k = 0. \end{cases}$$

where we used that $s(p^m) = \mu(p^m) = 0$ for $m \ge 2$ and $\mu(p) = -1$.

- **6.** (i) Determine the value $z = K(\langle 4; \overline{4,8} \rangle)$ of the periodic continued fraction $\langle 4; \overline{4,8} \rangle$. Find an integer d such that $z^2 = d$.
 - (ii) Compute the first three convergents of z.
 - (iii) Give two positive integer solutions to the equation $x^2 dy^2 = 1$ where d is as in (i).

Solution 6. (i) Since $z = K(\langle 4; \overline{4,8} \rangle) = 4 + \frac{1}{K(\langle \overline{4,8} \rangle)}$ we first compute $y = K(\langle \overline{4,8} \rangle)$. We have that

$$y = 4 + \frac{1}{8 + \frac{1}{y}} = 4 + \frac{y}{8y + 1}.$$

Multiplying both sides by 8y+1 we obtain that $8y^2-32y-4=0$, or equivalently $y^2-4y-\frac{1}{2}=0$. Using the p-q-formula, we obtain that the solutions to this quadratic equation are

$$y_{1/2} = 2 \pm \sqrt{4 + \frac{1}{2}}$$

Since y > 0, it follows that $y = 2 + \frac{3}{\sqrt{2}}$. It follows that

$$z = 4 + \frac{1}{2 + \frac{3}{\sqrt{2}}} = 4 + \frac{\sqrt{2}}{2\sqrt{2} + 3} = \frac{9\sqrt{2} + 12}{2\sqrt{2} + 3} = \frac{(9\sqrt{2} + 12)(2\sqrt{2} - 3)}{-1} = 3\sqrt{2} = \sqrt{18}.$$

Therefore, d = 18 is an integer such that $z^2 = d$.

(ii) The first three convergents of z are

$$c_1 = 4 + \frac{1}{4} = \frac{17}{4}$$
, $c_2 = 4 + \frac{1}{4 + \frac{1}{8}} = \frac{140}{33}$, and $c_3 = 4 + \frac{1}{4 + \frac{1}{8 + \frac{1}{4}}} = \frac{577}{136}$.

- (iii) The given equation is an instance of Pell's equation. The period of the continued fraction expansion of $\sqrt{18}$ is 2 and therefore even. It follows that the solutions to Pells equation are given by $(x,y)=(p_{2k-1},q_{2k-1})$ where $k\in\mathbb{N}$. Therefore, two possible solutions are (x,y)=(17,4) and (x,y)=(577,136).
- 7. Let p>2 be a prime number. Show that the smallest positive integer a, such that the Legendre symbol $\left(\frac{a}{p}\right)=-1$, is a prime number.

Solution 7. We know that $\left(\frac{mn}{p}\right) = \left(\frac{m}{p}\right) \cdot \left(\frac{n}{p}\right)$. Furthermore $\left(\frac{b}{p}\right) \in \{-1,0,1\}$ for all $b \in \mathbb{Z}$. Therefore, if a were composite, then a = mn for some m,n with 0 < m,n < a. If all 0 < b < a would satisfy $\left(\frac{b}{p}\right) \in \{0,1\}$ we would obtain that

$$\left(\frac{mn}{p}\right) = \left(\frac{m}{p}\right) \cdot \left(\frac{n}{p}\right) \in \{0, 1\},$$

a contradiction. Therefore, a has to be a prime number.

8. Prove that the Diophantine equation $x^4 - 4y^4 = z^2$ has no positive integer solution.

Solution 8. Let x, y, z be positive integers such that $x^4 - 4y^4 = z^2$. Assume without loss of generality that x, y, z are pairwise coprime (otherwise, one obtains a smaller solution by dividing the equation by a common divisor). Rewriting the equation, we obtain that

$$(x^2)^2 = z^2 + (2y^2)^2$$
.

Therefore, $(2y^2, z, x^2)$ is a primitive pythagorean triple. It follows that there exist coprime $a, b \in \mathbb{Z}$ such that $x^2 = b^2 + a^2$, $z = b^2 - a^2$, and $2y^2 = 2ab$. In particular, $y^2 = ab$. Since a, b are coprime, it follows that there exist positive integers r, s such that $a = r^2$ and $b = s^2$. Substituting in $x^2 = b^2 + a^2$ we obtain that

$$x^2 = r^4 + s^4.$$

By the stronger version of the special case of Fermat's last theorem for n=4 proved in the lecture, this Diophantine equation doesn't have any positive integer solutions, and therefore the original Diophantine equation $x^4 - 4y^4 = z^2$ doesn't have any positive integer solutions.