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1. We have a random sample 0.3, 0.7, 1.5, 0.8, 0.6 from a continuous random
variable X with density function

f(x) =
1

2θ3
x2e−x/θ,

where x > 0 and θ > 0.

(a) Estimate θ by using the method of moments. (1p)
Hint: Without proof, you may use that E(X) = 3θ.

Solution: The sample mean is x̄ = 0.78. The moment estimate solves

0.78 = x̄ = m(θ) = E(X) = 3θ,

so we get the estimate θ∗ = 0.78/3 = 0.26.

(b) Estimate θ by using the method of maximum likelihood. (4p)

Solution: For a random sample x1, ..., xn, the likelihood is

L(θ) = f(x1) · ... · f(xn) =
1

2θ3
x21e
−x1/θ · ... · 1

2θ3
x2ne

−xn/θ

= 2−nx21 · ... · x2nθ−3n exp

(
−1

θ

n∑
i=1

xi

)
.

We want to maximize the likelihood w.r.t. θ. This is equivalent to max-
imizing the log likelihood

l(θ) = ln{L(θ)} = C − 3n ln θ − 1

θ

n∑
i=1

xi,

where C is a constant not depending on θ.
Differentiation yields

l′(θ) = −3n

θ
+

1

θ2

n∑
i=1

xi,

l′′(θ) =
3n

θ2
− 2

θ3

n∑
i=1

xi.

We solve l′(θ) = 0 to get

θ =
1

3n

n∑
i=1

xi =
x̄

3
,
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which gives a maximum because

l′′
( x̄

3

)
=

3n

(x̄/3)2
− 2

(x̄/3)3
nx̄ = −33n

x̄2
< 0.

Then, by inserting the numbers we get the ML estimate

θ∗ =
x̄

3
= 0.26,

which equals the moment estimate in this case.

2. We have a random sample x1, x2, x3 of the random variable X which has
expectation µ and variance 1, and a random sample y1, y2, y3, y4 of the random
variable Y which has expectation 2µ and variance 4. The means of the samples
are denoted by x̄ and ȳ, respectively. We may assume that X and Y are
independent.

Two estimates of µ are proposed:

µ∗1 =
2x̄+ ȳ

4
, µ∗2 =

3x̄+ 2ȳ

7
.

(a) Show that µ∗1 and µ∗2 are both unbiased for µ. (2p)

Solution: The corresponding estimators are

µ∗1 =
1

2
X̄ +

1

4
Ȳ , µ∗2 =

3

7
X̄ +

2

7
Ȳ ,

where X̄ and Ȳ are the random variables that correspond to x̄ and ȳ.
Because E(X̄) = E(X) = µ, and similarly E(Ȳ ) = 2µ, we get

E(µ∗1) =
1

2
E(X̄) +

1

4
E(Ȳ ) =

1

2
· µ+

1

4
· 2µ = µ,

and
E(µ∗2) =

3

7
E(X̄) +

2

7
E(Ȳ ) =

3

7
· µ+

2

7
· 2µ = µ,

showing that both estimates are unbiased for µ.
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(b) Which one of µ∗1 and µ∗2 is most efficient? Motivate your answer. (3p)

Solution: At first, we note that

V (X̄) =
V (X)

3
=

1

3
, V (Ȳ ) =

V (Y )

4
= 1.

This gives

V (µ∗1) =

(
1

2

)2

V (X̄) +

(
1

4

)2

V (Ȳ )

=
1

4
· 1

3
+

1

16
· 1 =

7

48
≈ 0.1458,

and

V (µ∗2) =

(
3

7

)2

V (X̄) +

(
2

7

)2

V (Ȳ )

=
9

49
· 1

3
+

4

49
· 1 =

7

49
=

1

7
≈ 0.1429,

which means that V (µ∗2) < V (µ∗1).
Hence, µ∗2 is most efficient of the two.

3



3. The number of power failures at Donald’s summer house follows a Poisson
distribution with parameter (mean) λ. During one summer, the Larsson family
rents Donald’s summer house. Donald tells the family that λ is at most 1.

(a) The family suspects that there are more power failures at the summer
house than what Donald claims. In fact, it turns out that during the
summer when they rent it, there are three power failures in total.
Test a suitable hypothesis to try to check if Donald is telling the truth.

(2p)

Solution: Test H0: λ = 1 vs H1: λ > 1. (This means that if we reject
H0, we have evidence that Donald does not tell the truth.)
Let X be the number of power failures. Under H0, we have X ∼ Po(1).
We observe x = 3. We reject H0 for ’at least as extreme’ values on x,
which gives the P value

P (X ≥ 3) = 1−P (X ≤ 2) = 1−e−1− 11

1!
e−1− 12

2!
e−1 = 1− 5

2
e−1 ≈ 0.08,

and since 0.08 > 0.05 we find that we may not reject H0 at the 5% level.
On this risk level, we have no evideince that Donald is not telling the
truth.

(b) Calculate the power of the test in (a) if in fact, λ = 5. (3p)

Solution: At first, we calculate the critical region {x ≥ C}, where C is
such that we (just) may reject H0 at the 5% level. We have seen that
C = 3 is not good enough. Analogous to (a), we find

P (X ≥ 4) = 1− P (X ≤ 3) ≈ 1− 0.98 = 0.02,

so we may take C = 4.
Hence, the power when λ = 5 equals

P (X ≥ 4;λ = 5) = 1− P (X ≤ 3;λ = 5) ≈ 1− 0.265 = 0.735,

i.e. 73.5%.
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4. Seasonal ranges (in hectares) for alligators were monitored by biologists on a
lake in Florida. Five alligators monitored in the spring showed ranges of 8.0,
12.1, 8.1, 18.2, 31.7. Four different alligators monitored in the summer showed
ranges of 102.0, 81.7, 54.7, 50.7.

Estimate the difference between mean spring and summer ranges, with a 95%
confidence interval. Be careful to state your assumptions. (5p)

Solution: We assume that we have two independent samples, x1, .., xn1 from
X ∼ N(µ1, σ

2
1) (spring) and y1, .., yn2 from Y ∼ N(µ2, σ

2
2) (summer), where

n1 = 5, n2 = 4. The parameters µ1, µ2, σ2
1 and σ2

2 are considered unknown.

We have observed the means x̄ = 15.620 and ȳ = 72.275, and the sample
variances s2x = 98.057 and s2y = 582.2558. These variances are very distinct
from each other, so it does not seem appropriate to assume that σ2

1 = σ2
2.

To calculate the confidence interval, we at first need to solve

1

f
=

1

n1 − 1

(n2s
2
x)

2

(n2s2x + n1s2y)
2

+
1

n2 − 1

(n1s
2
y)

2

(n2s2x + n1s2y)
2

for f , and by inserting numbers we so obtain f ≈ 3.81 ≈ 4. We get the 95%
confidence interval

Iµ1−µ2 = x̄− ȳ ± t0.025(4)

√
s2x
n1

+
s2y
n2

= 15.620− 72.275± 2.7764

√
98.057

5
+

582.2558

4

= −56.655± 35.682 = (−92.3, −21.0).

where t0.025(4) = 2.7764 is obtained from table 6.

Assuming equal variances, the confidence interval is (−84.4, −28.9), hence
considerably more narrow.
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5. We have one observation x = 1.2 of the random variable X, which is exponen-
tially distributed with parameter β, i.e. it has density function f(x) = βe−βx

for x > 0 and 0 otherwise.

Calculate a 90% confidence interval for β. (5p)

Solution: As a reference variable, take R = βX, which is Exponentially dis-
tributed with parameter 1 (Exp(1)) because it has distribution function

FR(t) = P (R ≤ t) = P (βX ≤ t) = P

(
X ≤ t

β

)
= 1− exp

(
−β · t

β

)
= 1− exp(−t).

The quantiles rα for R ∼ Exp(1) are given by

α = P (R > rα) = exp(−rα),

i.e. rα = − lnα. Now,

1− α = P (r1−α/2 < R < rα/2) = P
(
r1−α/2 < βX < rα/2

)
= P

(r1−α/2
X

< β <
rα/2
X

)
= P

(
− ln(1− α/2)

X
< β <

− ln(α/2)

X

)
,

which with α = 0.10 and x = 1.2 yields the 90% confidence interval

Iβ =

(
− ln(0.95)

1.2
,
− ln(0.05)

1.2

)
= (0.043, 2.946).
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6. Reaction times were measured for a random sample x1, ..., xn of n = 200 car
drivers. The mean reaction time in the sample was x̄ = 1.1 seconds, and the
standard deviation was s = 0.3.

(a) Calculate a 95% confidence interval for the mean reaction time for car
drivers in the whole population. (4p)

Solution: Let the reaction time be described by the random variable X,
with E(X) = µ. We want to calculate a 95% confidence interval for µ.
Because n is large, the central limit theorem motivates the reference vari-
able

R =
X̄ − µ
s/
√
n
≈ N(0, 1),

where X̄ is the mean of X1, ..., Xn, the random variables corresponding
to the sample x1, ..., xn. It follows that a 95% confidence interval for µ is
given by

Iµ = x̄±λ0.025
s√
n

= 1.1±1.96 · 0.3√
200

= 1.1±0.0416 = (1.0584, 1.1416).

(b) Somebody claims that the mean reaction time for the whole population
of car drivers is 1.0 seconds. Can you find support for this claim? (1p)

Solution: We find that µ = 1.0 is not included in the confidence interval
in (a). This is equivalent to rejecting H0 : µ = 1.0 vs H1: µ 6= 1.0 at the
5% level. Hence, at this risk level, we have evidence that the claim does
not hold.
Aternatively, calculate the observed test statistic

x̄− 1.0

s/
√
n

=
1.1− 1.0

0.3/
√

200
≈ 4.71 > 1.96 = λ0.025,

showing that we may reject H0 at the 5% level. (In fact, H0 may also be
rejected at much smaller levels.)
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7. At the University of Falnarp, a genetic experiment was conducted. A particular
type of beans were cultivated. Upon harvest, it was expected that four genetic
variants, numbered 1,2,3,4, should occur according to the proportions 1:3:3:9
(i.e. the first variant occurs in 1/16 of the cases, the second variant occurs
in 3/16 of the cases etcetera). The results of the experiment are given in the
table below.

Variant 1 2 3 4
Frequency 6 21 30 71

Does the experiment confirm the expectations about proportions? Try to
answer this question by performing a suitable hypothesis test. (5p)

Solution: Let pj be that probability that the bean belongs to variant j for
j = 1, 2, 3, 4. We want to test H0: p1 = 1/16, p2 = 3/16, p3 = 3/16, p4 = 9/16
vs H1: ¬H0. We use the χ2 goodness of fit test (’test av anpassning’).

The total number of beans in the experiment is 6 + 21 + 30 + 71 = 128. This
gives us the expected frequencies under H0 as ej = 128pj, i.e.

e1 = 128 · 1

16
= 8, e2 = 128 · 3

16
= 24 = e3, e4 = 128 · 9

16
= 72.

We find that all ej ≥ 5 and so χ2 approximation is permitted. The observed
test variable is

Q =
(6− 8)2

8
+

(21− 24)2

24
+

(30− 24)2

24
+

(71− 72)2

72
≈ 2.39.

The number of degrees of freedom is the number of cells minus one, 4− 1 = 3,
and we have

Q ≈ 2.39 < χ2
0.05(3) = 7.8147,

implying that we may not reject H0 at the 5% level.

On this risk level, we have no evidence that the expected proportions are not
correct.
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8. The table below gives the total consumption of nuclear power electricity (in
thousands of Tera Joule) in Sweden during the years 2000-2021 (data from
Statistics Sweden, SCB). Is there any trend in this material? Check this by
performing a suitable hypothesis test.

It is not allowed to assume that the numbers are normally distributed. (5p)

Year Consumption
2000 597
2001 771
2002 723
2003 717
2004 818
2005 755
2006 683
2007 662
2008 673
2009 540
2010 599
2011 603
2012 647
2013 662
2014 650
2015 559
2016 640
2017 643
2018 683
2019 682
2020 497
2021 541

Solution: Test H0: trend vs H1: no trend. We may use either the runs test or a test
based on Spearman’s rank correlation.

The runs test: The median in the material is 656 (the mean of the two ’middle’
observations in terms of rank, 650 and 662). We assign 0 to observations less than
the median och 1 to those greater than the median, giving the sequence
0 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0.
This sequence has 7 runs.

We may use normal approximation, because n0 = n1 = 11, giving
min(n0, n1) = 11 ≥ 10. We have E(R) = 12, V (R) = 12 · 11/21. Thus, the observed
test variable is

T =
7− 12√
12 · 11/21

≈ −2.18,

which is smaller than i.e. −λ0.05 = −1.6449, leading us to reject H0 at the 5% level.
(Observe that we only reject for few runs, since this is what corresponds to a trend.)

On this risk level, we have evidence of a trend.
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Spearman’s rank correlation: We may calculate the rank correlation (the corre-
lation between the ranks of the data and the years) as rs = −0.5192. Because the
number of observations is n = 22 ≥ 10, we may use normal approximation. We
observe the test variable

T =
√

21 · (−0.5192) ≈ −2.38 < −λ0.025 = −1.96,

and so, we may reject H0 at the 5% level. Observe that the test is two-sided here,
because the trend may be either positive or negative, yielding different signs on T .
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