

Grades 3, 4, 5 normally requires a minimum of 18, 25, 32 credits.

1. a) Let $E \subset \mathbb{R}$. Show that $\mathcal{F} = \{\emptyset, E, E^c, \mathbb{R}\}$ is the σ -algebra $\sigma(\{E\})$ of subsets of \mathbb{R} generated by $\{E\}$.
 b) If \mathcal{S} and \mathcal{T} are collections of subsets of \mathbb{R} , is it true that

$$\sigma(\mathcal{S} \cup \mathcal{T}) = \sigma(\mathcal{S}) \cup \sigma(\mathcal{T})?$$

Prove or disprove. (5p)

2. On a measure space with measure μ we have measurable functions $\{f_n\}_{n \geq 1}$ and f . Show that the condition $\lim_{n \rightarrow \infty} \mu(|f_n - f| > 0) = 0$ implies that $\{f_n\}$ converges to f in μ -measure, but that the converse statement is not true. (5p)
3. Given an arbitrary sequence $\{x_n\}_1^\infty$ of real numbers, define

$$g(x) = \sum_{n=1}^{\infty} e^{-n^2|x-x_n|}, \quad x \in \mathbb{R}$$

Show that the function g is finite almost everywhere with respect to Lebesgue measure. (6p)

4. Let (X, \mathcal{A}, μ) be a finite measure space and $f : X \rightarrow \mathbb{R}$ an integrable function in $L^1(X, \mu)$. Find the limit

$$\lim_{n \rightarrow \infty} \frac{1}{n} \int_X \ln(1 + e^{-nf}) d\mu. \quad (6p)$$

5. Suppose g is a Lebesgue measurable real-valued function on $[0, 1]$ such that the function $f(x, y) = 2g(x) - 3g(y)$ is Lebesgue integrable over $[0, 1] \times [0, 1]$. Show that g is Lebesgue integrable over $[0, 1]$. (6p)
6. Let μ be a measure and f a measurable function on the real interval $[0, 1]$, such that $0 < f(x) < \infty$ for all $x \in [0, 1]$. Show that

$$\int_{[0,1]} f^{-1} d\mu \geq \left(\int_{[0,1]} f d\mu \right)^{-1}. \quad (6p)$$

7. Let (X, \mathcal{A}, μ) be a measure space and fix $p \in [1, \infty)$. Let $\{f_n\}_{n \geq 1}$ and f be functions in $L^p(X, \mathcal{A}, \mu)$. Suppose $\lim_{n \rightarrow \infty} \|f_n - f\|_p = 0$. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $n \geq 1$ we have

$$\int_E |f_n|^p d\mu < \varepsilon \quad \text{whenever } \mu(E) < \delta. \quad (6p)$$