

Grades 3, 4, 5 normally requires at least 18, 25, 32 credits.

1. Consider $\mathcal{F} = \{E \in \mathbb{R} : \text{either } E \text{ is countable or } E^c \text{ is countable.}$
 - a) Show that \mathcal{F} is a σ -algebra. (3)
 - b) Find a measure μ on the measure space $(\mathbb{R}, \mathcal{F})$ such that the only μ -null set is \emptyset . (2)
2. Let $f(x) = x^{-1/2}$ if $0 < x < 1$, $f(x) = 0$ otherwise. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers, and set $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$. Show that the function g is finite almost everywhere with respect to Lebesgue measure on \mathbb{R} . (5)
3. Let μ be counting measure defined on the set of natural numbers $\mathbb{N} = \{1, 2, \dots\}$. Consider suitable sequences of real-valued measurable functions on this measure space and formulate and interpret the monotone and dominated convergence theorems and Fatou's lemma as statements about infinite series. (6)
4. Let $f_n(x) = ae^{-anx} - be^{-bnx}$, $x \geq 0$, where $0 < a < b$. Show that
 - a) $\sum_{n=1}^{\infty} \int_0^{\infty} f_n(x) dx = 0$;
 - b) $\sum_{n=1}^{\infty} f_n(x)$ is integrable on $[0, \infty)$ with respect to Lebesgue measure;
 - c) $\int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) dx = \log(b/a)$; and
 - d) determine $\sum_{n=1}^{\infty} \int_0^{\infty} |f_n(x)| dx$. (6)
5. Let μ be a measure and f a measurable function on the real interval $[0, 1]$, such that $\mu([0, 1]) \geq 1$ and $0 < f(x) < \infty$ for all $x \in [0, 1]$. Prove the inequality

$$\int_{[0,1]} f^{-1} d\mu \geq \left(\int_{[0,1]} f d\mu \right)^{-1}. \quad (6p)$$
6. Let μ and ν be σ -finite measures on a measurable space (X, \mathcal{A}) . Show that there exists measurable disjoint sets $A, B \in \mathcal{A}$, $A \cap B = \emptyset$, such that $X = A \cup B$ is a partition with μ and ν equivalent (mutually absolutely continuous) on A and singular measures on B , that is

$$\mu \sim \nu \quad \text{on } (A, \mathcal{A} \cap A) \quad \text{and} \quad \mu \perp \nu \quad \text{on } (B, \mathcal{A} \cap B). \quad (6p)$$

Hint: consider $\mu + \nu$ as a reference measure

7. Let (X, \mathcal{A}, μ) be a measure space and fix $p \in [1, \infty)$. Let $\{f_n\}_{n \geq 1}$ and f be functions in $L^p(X, \mathcal{A}, \mu)$. Suppose $\lim_{n \rightarrow \infty} \|f_n - f\|_p = 0$. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $n \geq 1$ we have

$$\int_E |f_n|^p d\mu < \varepsilon \quad \text{whenever } \mu(E) < \delta. \quad (6p)$$