

Grades 3, 4, 5 normally requires at least 18, 25, 32 credits (including any bonus points).

1. Consider $\mathcal{F} = \{E \in \mathbb{R} : \text{either } E \text{ is countable or } E^c \text{ is countable}\}$.
 - a) Show that \mathcal{F} is a σ -algebra. (3)
 - b) Find a measure μ on $(\mathbb{R}, \mathcal{F})$ such that the only μ -null set is \emptyset . (2)
2. Let $f(x) = x^{-1/2}$ if $0 < x < 1$, $f(x) = 0$ otherwise. Let $\{r_n\}_{n=1}^{\infty}$ be an enumeration of the rational numbers, and set $g(x) = \sum_{n=1}^{\infty} 2^{-n} f(x - r_n)$. Show that g is finite almost everywhere with respect to Lebesgue measure on \mathbb{R} . (5)
3. Let μ be a finite measure on a measurable space (X, \mathcal{A}) . Let f and f_1, f_2, \dots be \mathcal{A} -measurable functions on X such that $f_n \rightarrow f$, μ -almost everywhere. Assume that the sequence $(f_n)_1^{\infty}$ also satisfies the property

$$\lim_{\alpha \rightarrow \infty} \sup_n \int_{\{|f_n| \geq \alpha\}} |f_n| d\mu = 0 \quad (\star)$$

- a) Show that f is integrable. (2)
- b) Show that the sequence $h_n = |f_n - f|$ also satisfies property (\star) . (2)
- c) Show that $f_n \rightarrow f$ in $L^1(\mu)$. (2)

4. For $n \geq 1$, let

$$K_n = \frac{n}{1 - e^{-n}} \int_0^1 \ln\left(\frac{1}{y} - 1\right) e^{-ny} dy.$$

Show that there is a constant C , such that

$$K_n - \ln n \rightarrow C, \quad n \rightarrow \infty. \quad (6)$$

[Can you identify C and give an approximate numerical value? 1 bonus point]

5. Let μ and ν be σ -finite measures on a measurable space (X, \mathcal{A}) . Show that there exists measurable disjoint sets $A, B \in \mathcal{A}$, $A \cap B = \emptyset$, such that $X = A \cup B$ is a partition with μ and ν equivalent (mutually absolutely continuous) on A and singular measures on B , that is

$$\mu \sim \nu \quad \text{on } (A, \mathcal{A} \cap A) \quad \text{and} \quad \mu \perp \nu \quad \text{on } (B, \mathcal{A} \cap B). \quad (6)$$

Hint: consider $\mu + \nu$ as a reference measure

6. Let $f_n(x) = ae^{-anx} - be^{-bnx}$, $x \geq 0$, where $0 < a < b$. Show that

- $\sum_{n=1}^{\infty} \int_0^{\infty} f_n(x) dx = 0$;
- $\sum_{n=1}^{\infty} f_n(x)$ is integrable on $[0, \infty)$ with respect to Lebesgue measure;
- $\int_0^{\infty} \sum_{n=1}^{\infty} f_n(x) dx = \log(b/a)$; and
- determine $\sum_{n=1}^{\infty} \int_0^{\infty} |f_n(x)| dx$. (6)

7. Let (X, \mathcal{A}, μ) be a measure space and fix $p \in [1, \infty)$. Let $\{f_n\}_{n \geq 1}$ and f be functions in $L^p(X, \mathcal{A}, \mu)$. Suppose $\lim_{n \rightarrow \infty} \|f_n - f\|_p = 0$. Show that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all $n \geq 1$ we have

$$\int_E |f_n|^p d\mu < \varepsilon \quad \text{whenever } \mu(E) < \delta. \quad (6)$$