

Grades 3, 4, 5 normally requires at least 18, 25, 32 credits.

1. Find

$$\lim_{n \rightarrow \infty} \int_0^{n^2} \frac{2x}{n^2} \left(1 - \frac{x}{n^2}\right)^n dx. \quad (5p)$$

2. Given an arbitrary sequence $\{x_n\}_1^\infty$ of real numbers, define

$$g(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 \sqrt{|x - x_n|}}, \quad x \in \mathbb{R}.$$

Show that g is finite almost everywhere with respect to Lebesgue measure. (5p)

3. Let (X, \mathcal{A}, μ) be a measure space and let f and g be functions in $L^1(X, \mathcal{A}, \mu)$. Assume that there is a sequence $(f_n)_{n \geq 1}$ of functions in $L^1(X, \mathcal{A}, \mu)$, such that f_n converges to f μ -almost everywhere and f_n converges to g in L^1 -norm. Prove that $f = g$ almost everywhere with respect to μ . (6p)

4. Suppose that f is an absolutely continuous function on $[0, 1]$ such that $f(0) = 0$ and $f' \in L^4([0, 1], m)$. Prove that

$$\int_0^1 |f(x)|^4 dx \leq \frac{1}{4} \int_0^1 |f'(x)|^4 dx \quad (6p)$$

5. The function F is given by

$$F(x) = \begin{cases} 0, & x < -1 \\ 1, & -1 \leq x < 2 \\ x, & x \geq 2. \end{cases}$$

Let $\mu = \mu_F$ be the associated measure defined by $\mu_F((-\infty, x]) = F(x)$, $x \in \mathbb{R}$. Determine the Lebesgue decomposition of μ and find $\int_{[-3, 3]} x d\mu(x)$. (6)

6. Suppose that μ and ν are two finite measures on the same measurable space (X, \mathcal{F}) .

a) Show that if ρ is a σ -finite measure on (X, \mathcal{F}) such that $\mu \ll \rho$ and $\nu \ll \rho$, then

$$\int_X \sqrt{\frac{d\mu}{d\rho} \frac{d\nu}{d\rho}} d\rho < \infty. \quad (2p)$$

b) Show that there exists at least one such dominating measure ρ . (1p)

c) Show that the integral in a) is independent of the choice of ρ . (3p)

7. Assume that $f, g \in L^2(\mathbb{R}^d, m)$, that is, f and g are square-integrable functions with respect to Lebesgue measure m defined on \mathbb{R}^d . Put $F(x, y) = (f(x)g(y) - f(y)g(x))^2$, $(x, y) \in \mathbb{R}^d \times \mathbb{R}^d$.

a) Show that the function F is integrable on the product space $\mathbb{R}^d \times \mathbb{R}^d$ with respect to the product measure $m \otimes m$. (3p)

b) Use the result in a) to prove the Cauchy-Schwarz inequality in \mathbb{R}^d , namely

$$\|fg\|_{L^1(\mathbb{R}^d)} \leq \|f\|_{L^2(\mathbb{R}^d)} \|g\|_{L^2(\mathbb{R}^d)}. \quad (3p)$$