

Good reasoning and justifications will be taken into account during assessment and scoring. Grades 3, 4, 5 normally requires at least 18, 25, 32 credits (including any bonus points)

1. Let (X, \mathcal{A}, μ) be a finite measure space and let f be a function in $L^1(X, \mathcal{A}, \mu)$. Show that if a is a real number and

$$\int_E f d\mu \leq a \mu(E), \quad \text{for all } E \in \mathcal{A},$$

then $f \leq a$, μ -almost everywhere. (5p)

2. Compute

$$\lim_{n \rightarrow \infty} n \int_0^1 (1+x)^{-n} (1 - \sin x) dx. \quad (6p)$$

3. Consider the measure space $(\mathbb{Z}, \mathcal{P}(\mathbb{Z}), \mu)$, where $\mathcal{P}(\mathbb{Z})$ is the collection of all subsets of the integers \mathbb{Z} , and μ is the counting measure, $\mu(A) =$ the number of integers in A , $A \in \mathcal{P}(\mathbb{Z})$. Let f and f_1, f_2, \dots be real-valued functions on \mathbb{Z} . Prove that f_n converges in μ -measure to f if and only if f_n converges uniformly to f . (6p)

4. Let (X, \mathcal{A}, μ) be a σ -finite measure space and let $f, g \in L^2(X, \mathcal{A}, \mu)$. Define a function $F : X \times X \rightarrow \mathbb{R}$ by

$$F(x, y) = (f(x)g(y) - f(y)g(x))^2, \quad (x, y) \in X \times X.$$

Show that F is integrable on the product space $(X \times X, \mathcal{A} \otimes \mathcal{A}, \mu \otimes \mu)$ and use this result to prove the Cauchy-Schwarz inequality for the Hilbert space $L^2(X, \mathcal{A}, \mu)$. (6p)

5. Let μ and ν be σ -finite measures on a measurable space (X, \mathcal{A}) . Show that there exists measurable disjoint sets $A, B \in \mathcal{A}$, $A \cap B = \emptyset$, such that $X = A \cup B$ is a partition with μ and ν equivalent (mutually absolutely continuous) on A and singular measures on B , that is

$$\mu \sim \nu \quad \text{on } (A, \mathcal{A} \cap A) \quad \text{and} \quad \mu \perp \nu \quad \text{on } (B, \mathcal{A} \cap B). \quad (6)$$

6. Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a Lebesgue integrable function and define

$$G(x) = \int_{-\infty}^{\infty} e^{-|y|} f(x-y) dy, \quad x \in \mathbb{R}.$$

Show that there exists a unique signed measure μ_G on \mathbb{R} , such that $\mu_G((-\infty, x]) = G(x)$, $x \in \mathbb{R}$. (6p)

7. Suppose that f is an absolutely continuous function on $[0, 1]$ such that $f(0) = 0$ and $f' \in L^4([0, 1], m)$. Prove that

$$\frac{|f(t)|^4}{t^3} \rightarrow 0, \quad \text{as } t \rightarrow 0$$

and, for every $\varepsilon > 0$,

$$\int_0^1 \frac{|f(t)|^4}{t^{4-\varepsilon}} dt \leq \frac{1}{\varepsilon} \int_0^1 |f'(y)|^4 dy \quad (5p)$$