

1. Set  $g = f - a$  so that

$$\int_E g \, d\mu \leq 0, \quad \text{all } E \in \mathcal{A}.$$

Now choose  $E = \{g > 0\}$  to obtain

$$0 \geq \int_E g \, d\mu = \int_{\{g>0\}} g \, d\mu = \int_X g 1_{\{g>0\}} \, d\mu \geq 0$$

as  $g 1_{\{g>0\}} \geq 0$ ,  $\mu$ -almost everywhere. Hence

$$\int_X g 1_{\{g>0\}} \, d\mu = 0.$$

It follows that

$$E = \{g 1_{\{g>0\}} > 0\} = \bigcup_{n=1}^{\infty} \left\{ g 1_{\{g>0\}} > \frac{1}{n} \right\}$$

is a  $\mu$ -null set, since

$$\mu(\{g 1_{\{g>0\}} > 1/n\}) \leq n \int_X g 1_{\{g>0\}} \, d\mu = 0$$

and a countable union of null sets is a null set (subadditivity of measures). Hence  $f \leq a$ ,  $\mu$ -a.e.

*Alternative:* Assume  $E = \{g > 0\}$  has positive measure,  $\mu(E) > 0$ . Then

$$\int_E f \, d\mu > \int_E a \, d\mu = a\mu(E) \geq \int_E f \, d\mu,$$

again using the special assumption in this problem. This is a contradiction and the conclusion is  $\mu(E) = 0$ .

2. To find the limit

$$\lim_{n \rightarrow \infty} n \int_0^1 (1+x)^{-n} (1 - \sin x) \, dx,$$

a variable substitution from  $x$  to  $nx$  yields

$$n \int_0^1 (1+x)^{-n} (1 - \sin x) \, dx = \int_0^{\infty} f_n(x) \, dx, \quad f_n(x) = 1_{\{x \leq n\}} \left(1 + \frac{x}{n}\right)^{-n} \left(1 - \sin \frac{x}{n}\right).$$

For every fixed  $x > 0$ , as  $n \rightarrow \infty$ ,  $1_{\{x \leq n\}} \rightarrow 1$ ,  $(1+x/n)^{-n} \rightarrow e^{-x}$  and  $1 - \sin(x/n) \rightarrow 1$ , and thus  $f_n(x) \rightarrow e^{-x}$ .

We want to apply dominated convergence, and we thus seek a dominating function that is integrable.

*Method 1.* Use the Taylor series expansion, for  $0 \leq x \leq 1$ ,

$$\ln(1+x) = \left(x - \frac{x^2}{2}\right) + \left(\frac{x^3}{3} - \frac{x^4}{4}\right) + \dots \geq x - \frac{x^2}{2} \geq x/2.$$

Hence, for  $0 \leq x \leq n$ ,

$$\left(1 + \frac{x}{n}\right)^{-n} = e^{-n \ln(1+x/n)} \leq e^{-nx/2n} = e^{-x/2}$$

and thus, since  $f_n(x) = 0$  for  $x > n$ ,

$$|f_n(x)| \leq 2e^{-x/2}, \quad x \in \mathbb{R}, n \geq 1.$$

*Method 2.* Use that  $(1 + x/n)^n$  is an increasing function in  $n$ , for every  $x \geq 0$ . Thus,

$$\left(1 + \frac{x}{n}\right)^{-n} \leq \left(1 + \frac{x}{2}\right)^{-2} \leq \frac{1}{1+x},$$

and

$$|f_n(x)| \leq 2(1 + x/2)^{-2}, \quad x \geq 0,$$

which is integrable (the rightmost bound above is *not* integrable).

*Method 3.* For example, use the binomial theorem to find a lower bound of  $(1 + x/n)^n$ .

Now, the dominated convergence theorem applies and we conclude that

$$\lim_{n \rightarrow \infty} \int_0^\infty f_n(x) dx = \int_0^\infty \lim_{n \rightarrow \infty} f_n(x) dx = \int_0^\infty e^{-x} dx = 1.$$

*Alternative.* Rewrite as

$$n \int_0^1 (1+x)^{-n} (1 - \sin x) dx = n \int_0^1 (1+x)^{-n} dx - n \int_0^1 (1+x)^{-n} \sin x dx,$$

evaluate the first integral and apply the DCT to the second using  $\sin x \leq x$  to obtain a dominating function, which is integrable.

3. Since every subset is measurable, all functions  $f$  and  $f_n$  are measurable with respect to  $\mathcal{F}$ .

A sequence  $f_n$  is said to converge to  $f$  in measure with respect to  $\mu$ , if  $\mu(\{|f_n - f| > \varepsilon\}) \rightarrow 0$  as  $n \rightarrow \infty$ , for each  $\varepsilon > 0$ . In particular, if  $f_n$  converges to  $f$  in counting measure  $\mu$  we can find  $N$  such that  $\mu(\{z \in \mathbb{Z} : |f_n(z) - f(z)| > \varepsilon\}) < 1/2$  whenever  $n \geq N$ . But then  $|f_n(z) - f(z)| \leq \varepsilon$  for each integer  $z$ , and hence  $\sup_{z \in \mathbb{Z}} |f_n(z) - f(z)| \leq \varepsilon$ , for  $n \geq N$ .

Conversely, assuming  $f_n$  converges uniformly to  $f$ , fix  $\varepsilon$  and take  $n$  so large that  $\sup_{z \in \mathbb{Z}} |f_n(z) - f(z)| \leq \varepsilon$ . Then  $\{z : |f_n(z) - f(z)| > \varepsilon\}$  is a  $\mu$ -zero set for such  $n$  and hence, obviously,  $\mu\{z : |f_n(z) - f(z)| > \varepsilon\} \rightarrow 0$  as  $n \rightarrow \infty$ .

4. Writing

$$F(x, y) = f^2(x)g^2(y) + f^2(y)g^2(x) - G(x, y), \quad G(x, y) = 2f(x)f(y)g(x)g(y),$$

we observe that

$$|G(x, y)| \leq f^2(x)g^2(y) + f^2(y)g^2(x)$$

and

$$F(x, y) \leq f^2(x)g^2(y) + f^2(y)g^2(x) + |G(x, y)| \leq 2(f^2(x)g^2(y) + f^2(y)g^2(x)).$$

Hence

$$\int_{X \times X} |G(x, y)| d(\mu \otimes \mu) \leq 2 \int_{X \times X} f^2 g^2 d(\mu \otimes \mu),$$

where the factor 2 is from the symmetry in the variables  $x$  and  $y$ , and

$$\int_{X \times X} F(x, y) d(\mu \otimes \mu) \leq 4 \int_{X \times X} f^2 g^2 d(\mu \otimes \mu).$$

As the measure space is  $\sigma$ -finite we can apply Fubini's theorem. Fubini's theorem for non-negative functions (Fubini-Tonelli) implies

$$\int_{X \times X} f^2 g^2 d(\mu \otimes \mu) = \int_X f^2(x) \left( \int_X g^2(y) d\mu(y) \right) d\mu(x) = \int_X f^2 d\mu \int_X g^2 d\mu < \infty,$$

since  $f$  and  $g$  are square-integrable. Thus, we have shown that  $F$  is integrable on the product space. Moreover,  $|G|$  is integrable and hence  $G$  is. By the regular Fubini's theorem for signed functions, we obtain

$$\int_{X \times X} G(x, y) d(\mu \otimes \mu) = 2 \int_X f g d\mu \int_X f g d\mu < \infty.$$

Furthermore,

$$\int_{X \times X} F(x, y) d(\mu \otimes \mu) = 2 \left( \int_X f^2 d\mu \int_X g^2 d\mu - \int_X f g d\mu \int_X f g d\mu \right) \geq 0$$

and therefore

$$\left| \int_X f g d\mu \right| \leq \sqrt{\int_X f^2 d\mu} \sqrt{\int_X g^2 d\mu},$$

which is the desired Cauchy-Schwarz inequality.

5. Let  $\lambda$  be the  $\sigma$ -finite measure  $\lambda = \mu + \nu$ . Then  $\mu \ll \lambda$  and  $\nu \ll \lambda$ . By the Radon-Nikodym theorem there exists nonnegative functions  $g$  and  $h$  such that for every  $E$  in  $\mathcal{A}$ ,

$$\mu(E) = \int_E g d\lambda \quad \text{and} \quad \nu(E) = \int_E h d\lambda.$$

Let  $A = \{x \in X : g(x)h(x) > 0\}$  and  $B = A^c$ . If  $E \in \mathcal{A}$  and  $E \subset A$  then  $\mu(E)$  implies  $\lambda(E) = 0$  since  $g > 0$  on  $A$ , and therefore,  $\nu(E) = 0$ . Thus  $\nu \ll \mu$  on  $A$ . By symmetry we can prove  $\mu \ll \nu$  on  $A$  in the same manner. Hence,  $\mu$  and  $\nu$  are equivalent on  $A$ .

Next, we partition  $B$  as  $B = C \cup D$ , where

$$C = \{x : h(x) = 0\}, \quad D = B \setminus C = \{x : h(x) > 0, g(x) = 0\}.$$

For all measurable sets  $E \subset C$  and  $F \subset D$  we then have  $\mu(E) = \nu(F) = 0$ . Hence, indeed,  $\mu$  and  $\nu$  are singular measures on  $B$ .

6. We have

$$G(x) = \int_{-\infty}^{\infty} e^{-|y|} f(x-y) dy, \quad x \in \mathbb{R},$$

where  $f : \mathbb{R} \rightarrow \mathbb{R}$  is a Lebesgue integrable function. Then there exists a unique signed measure  $\mu_G$  on  $\mathbb{R}$ , such that  $\mu_G((-\infty, x]) = G(x)$ ,  $x \in \mathbb{R}$ , if and only if 1)  $G$  is right-continuous, 2)  $G$  satisfies  $G(x) \rightarrow 0$  as  $x \rightarrow -\infty$ , and 3)  $G$  has bounded variation.

Letting  $h$  be the exponential function  $h(x) = e^{-|x|}$ ,  $G$  is the convolution  $G = h * f$ . By a general result, the convolution of a continuous function with an integrable function is continuous, which implies the weaker property 1). This follows from Lebesgue's dominated convergence theorem as sequential continuity. Indeed, let  $(c_n)_{n \geq 1}$  be a sequence of real numbers that converges to a real number  $c$ . Then

$$G(c_n) = \int_{\mathbb{R}} e^{-|c_n-y|} f(y) dy \rightarrow \int_{\mathbb{R}} e^{-|c-y|} f(y) dy = G(c).$$

Similarly, 2) follows from the DCT, as  $G(c_n) \rightarrow 0$  whenever  $c_n \rightarrow -\infty$ .

To prove 3), let  $\{x_k\}$  be a partition of the real line,  $-\infty < x_0 < x_1 < \dots < x_n < \infty$ . Then

$$\sum_{k=1}^n |G(x_k) - G(x_{k-1})| \leq \int_{\mathbb{R}} \sum_{k=1}^n |h(x_k - y) - h(x_{k-1} - y)| |f(y)| dy.$$

Now, the exponential function  $h$  has bounded variation. One way to see this is to write  $h$  as a difference of two increasing functions. Thus, taking the supremum over all partitions, there is a finite constant  $C$  such that

$$\sup_{\{x_k\}} |h(x_k) - h(x_{k-1})| \leq C.$$

Hence

$$\sup_{\{x_k\}} \sum_{i=1}^n |G(x_k) - G(x_{k-1})| \leq C \int_{\mathbb{R}} |f(y)| dy < \infty,$$

which completes the proof of 3) and hence the proof of existence of  $\mu_G$ .

7. Since  $f$  is an absolutely continuous function on  $[0, 1]$  with  $f(0) = 0$ ,

$$f(t) = \int_0^t f'(y) dy,$$

where  $f'$  exists almost everywhere. By Hölder's inequality with conjugate exponents  $p = 4$  and  $q = 4/3$ ,

$$|f(t)| \leq \int_0^t |f'(y)| dy \leq \left( \int_0^t |f'(y)|^4 dy \right)^{1/4} t^{3/4} < \infty,$$

since  $f' \in L^4$ . Moreover,

$$\frac{|f(t)|^4}{t^3} \leq \int_0^t |f'(y)|^4 dy \rightarrow 0, \quad \text{as } t \rightarrow 0.$$

Also, for every  $\varepsilon > 0$ ,

$$\frac{|f(t)|^4}{t^{4-\varepsilon}} \leq \int_0^t |f'(y)|^4 dy t^{\varepsilon-1}, \quad t > 0,$$

and therefore, using Fubini's theorem,

$$\begin{aligned} \int_0^1 \frac{|f(t)|^4}{t^{4-\varepsilon}} dt &\leq \int_0^1 \int_0^t |f'(y)|^4 dy t^{\varepsilon-1} dt \\ &= \int_0^1 |f'(y)|^4 \int_y^1 t^{\varepsilon-1} dt dy \leq \frac{1}{\varepsilon} \int_0^1 |f'(y)|^4 dy < \infty. \end{aligned}$$