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1. Set g = f − a so that ∫
E
g dµ ≤ 0, all E ∈ A.

Now choose E = {g > 0} to obtain

0 ≥
∫
E
g dµ =

∫
{g>0}

g dµ =

∫
X
g 1{g>0} dµ ≥ 0

as g 1{g>0} ≥ 0, µ-almost everywhere. Hence∫
X
g 1{g>0} dµ = 0.

It follows that

E = {g 1{g>0} > 0} =

∞⋃
n=1

{
g 1{g>0} >

1

n

}
is a µ-null set, since

µ({g 1{g>0} > 1/n}) ≤ n

∫
X
g 1{g>0} dµ = 0

and a countable union of null sets is a null set (subadditivity of measures). Hence f ≤ a,
µ-a.e.

Alternative: Assume E = {g > 0} has positive measure, µ(E) > 0. Then∫
E
f dµ >

∫
E
a dµ = aµ(E) ≥

∫
E
f dµ,

again using the special assumption in this problem. This is a contradiction and the conclusion
is µ(E) = 0.

2. To find the limit

lim
n→∞

n

∫ 1

0
(1 + x)−n(1− sinx) dx,

a variable substitution from x to nx yields

n

∫ 1

0
(1 + x)−n(1− sinx) dx =

∫ ∞

0
fn(x) dx, fn(x) = 1{x≤n}

(
1 +

x

n

)−n(
1− sin

x

n

)
.

For every fixed x > 0, as n → ∞, 1{x≤n} → 1, (1+x/n)−n → e−x and 1− sin(x/n) → 1, and
thus fn(x) → e−x.

We want to apply dominated convergence, and we thus seek a dominating function that is
integrable.

Method 1. Use the Taylor series expansion, for 0 ≤ x ≤ 1,

ln(1 + x) =
(
x− x2

2

)
+
(x3
3

− x4

4

)
+ · · · ≥ x− x2

2
≥ x/2.

Hence, for 0 ≤ x ≤ n, (
1 +

x

n

)−n
= e−n ln(1+x/n) ≤ e−nx/2n = e−x/2



and thus, since fn(x) = 0 for x > n,

|fn(x)| ≤ 2 e−x/2, x ∈ R, n ≥ 1.

Mathod 2. Use that (1 + x/n)n is an increasing function in n, for every x ≥ 0. Thus,(
1 +

x

n

)−n
≤

(
1 +

x

2

)−2
≤ 1

1 + x
,

and
|fn(x)| ≤ 2(1 + x/2)−2, x ≥ 0,

which is integrable (the rightmost bound above is not integrable).

Method 3. For example, use the binomial theorem to find a lower bound of (1 + x/n)n.

Now, the dominated convergence theorem applies and we conclude that

lim
n→∞

∫ ∞

0
fn(x) dx =

∫ ∞

0
lim
n→∞

fn(x) dx =

∫ ∞

0
e−x dx = 1.

Alternative. Rewrite as

n

∫ 1

0
(1 + x)−n(1− sinx) dx = n

∫ 1

0
(1 + x)−n dx− n

∫ 1

0
(1 + x)−n sinx dx,

evluate the first integral and apply the DCT to the second using sinx ≤ x to obtain a
dominating function, which is integrable.

3. Since every subset is measurable, all functions f and fn are measurable with respect to F .

A sequence fn is said to converge to f in measure with respect to µ, if µ({|fn− f | > ε}) → 0
as n → ∞, for each ε > 0. In particular, if fn converges to f in counting measure µ we
can find N such that µ({z ∈ Z : |fn(z) − f(z)| > ε}) < 1/2 whenever n ≥ N . But then
|fn(z)− f(z)| ≤ ε for each integer z, and hence supz∈Z |fn(z)− f(z)| ≤ ε, for n ≥ N .

Conversely, assuming fn converges uniformly to f , fix ε and take n so large that supz∈Z |fn(z)−
f(z)| ≤ ε. Then {z : |fn(z) − f(z)| > ε} is a µ-zero set for such n and hence, obviously,
µ{z : |fn(z)− f(z)| > ε} → 0 as n → ∞.

4. Writing

F (x, y) = f2(x)g2(y) + f2(y)g2(x)−G(x, y), G(x, y) = 2f(x)f(y)g(x)g(y),

we observe that
|G(x, y)| ≤ f2(x)g2(y) + f2(y)2g2(y)

and

F (x, y) ≤ f2(x)g2(y) + f2(y)2g2(y) + |G(x, y)| ≤ 2(f2(x)g2(y) + f2(y)2g2(y)).

Hence ∫
X×X

|G(x, y)| d(µ⊗ µ) ≤ 2

∫
X×X

f2g2 d(µ⊗ µ),

where the factor 2 is from the symmetry in the variables x and y, and∫
X×X

F (x, y) d(µ⊗ µ) ≤ 4

∫
X×X

f2g2 d(µ⊗ µ).



As the measure space is σ-finite we can apply Fubini’s theorem. Fubini’s theorem for non-
negative functions (Fubini-Tonelli) implies∫

X×X
f2g2 d(µ⊗ µ) =

∫
X
f2(x)

(∫
X
g2(y) dµ(y)

)
dµ(x) =

∫
X
f2 dµ

∫
X
g2 dµ < ∞,

since f and g are square-integrable, Thus, we have shown that F is integrable on the product
space. Moreover, |G| is integrable and hence G is. By the regular Fubini’s theorem for signed
functions, we obtain∫

X×X
G(x, y) d(µ⊗ µ) = 2

∫
X
fg dµ

∫
X
fg dµ < ∞.

Furthermore,∫
X×X

F (x, y) d(µ⊗ µ) = 2
(∫

X
f2 dµ

∫
X
g2 dµ−

∫
X
fg dµ

∫
X
fg dµ

)
≥ 0

and therefore ∣∣∣ ∫
X
fg dµ

∣∣∣ ≤ √∫
X
f2 dµ

√∫
X
g2 dµ,

which is the desired Cauchy-Schwarz inequality.

5. Let λ be the σ-finite measure λ = µ + ν. Then µ ≪ λ and ν ≪ λ. By the Radon-Nikodym
theorem there exists nonnegative functions g and h such that for every E in A,

µ(E) =

∫
E
g dλ and ν(E) =

∫
E
h dλ.

Let A = {x ∈ X : g(x)h(x) > 0} and B = Ac. If E ∈ A and E ⊂ A then µ(E) implies
λ(E) = 0 since g > 0 on A, and therefore, ν(E) = 0. Thus ν ≪ µ on A. By symmetry we
can prove µ ≪ ν on A in the same manner. Hence, µ and ν are equivalent on A.

Next, we partition B as B = C ∪D, where

C = {x : h(x) = 0}, D = B \ C = {x : h(x) > 0, g(x) = 0}.

For all measurable sets E ⊂ C and F ⊂ D we then have µ(E) = ν(F ) = 0. Hence, indeed, µ
and ν are singular measures on B.

6. We have

G(x) =

∫ ∞

−∞
e−|y|f(x− y) dy, x ∈ R,

where f : R → R is a Lebesgue integrable function. Then there exists a unique signed measure
µG on R, such that µG((−∞, x]) = G(x), x ∈ R, if and only if 1) G is right-continuous, 2) G
satisfies G(x) → 0 as x → −∞, and 3) G has bounded variation.

Letting h be the exponential function h(x) = e−|x|, G is the convolution G = h ∗ f . By
a general result, the convolution of a continuous function with an integrable function is
continuous, which implies the weaker property 1). This follows from Lebesgue’s dominated
convergence theorem as sequential continuity. Indeed, let (cn)n≥1 be a sequence of real
numbers that converges to a real number c. Then

G(cn) =

∫
R
e−|cn−y|f(y) dy →

∫
R
e−|c−y|f(y) dy = G(c).

Similarly, 2) follows from the DCT, as G(cn) → 0 whenever cn → −∞.



To prove 3), let {xk} be a partition of the real line, −∞ < x0 < x1 < · · · < xn < ∞. Then

n∑
k=1

|G(xk)−G(xk−1)| ≤
∫
R

n∑
k=1

|h(xk − y)− h(xk−1 − y)| |f(y)| dy.

Now, the exponential function h has bounded variation. One way to see this is to write h
as a difference of two increasing functions. Thus, taking the supremum over all partitions,
there is a finite constant C such that

sup
{xk}

|h(xk)− h(xk−1)| ≤ C.

Hence

sup
{xk}

n∑
i=1

|G(xk)−G(xk−1)| ≤ C

∫
R
|f(y)| dy < ∞,

which completes the proof of 3) and hence the proof of existence of µG.

7. Since f is an absolutely continuous function on [0, 1] with f(0) = 0,

f(t) =

∫ t

0
f ′(y) dy,

where f ′ exists almost everywhere. By Hölder’s inequality with conjugate exponents p = 4
and q = 4/3,

|f(t)| ≤
∫ t

0
|f ′(y)| dy ≤

(∫ t

0
|f ′(y)|4 dy

)1/4
t3/4 < ∞,

since f ′ ∈ L4. Moreover,

|f(t)|4

t3
≤

∫ t

0
|f ′(y)|4 dy → 0, as t → 0.

Also, for every ε > 0,
|f(t)|4

t4−ε
≤

∫ t

0
|f ′(y)|4 dy tε−1, t > 0,

and therefore, using Fubini’s theorem,∫ 1

0

|f(t)|4

t4−ε
dt ≤

∫ 1

0

∫ t

0
|f ′(y)|4 dy tε−1 dt

=

∫ 1

0
|f ′(y)|4

∫ 1

y
tε−1 dt dy ≤ 1

ε

∫ 1

0
|f ′(y)|4 dy < ∞.


