UPPSALA UNIVERSITET Matematiska institutionen Ryszard Rubinsztein tel.471 76 22

Prov i matematik KandMa2, Frist KOMPLEX ANALYS 10hp 2015–01–14

Writing time: 14.00 - 19.00. Tools allowed: pens, pencils, rubber. Every correctly solved problem gives up to 5 points.

1. Solve the equation

$$\sin z - \cos z = i .$$

(The answer should be given in the form a + bi, where a and b are real.)

2. Find all functions f = u + iv which are analytic in \mathbb{C} and such that xu(x,y) is the real part of an analytic function. The answer should be given as an expression in the variable z = x + iy.

- **3.** Find a Möbius transformation which maps the disc |z-2| < 2 onto the unit disc |z| < 1, maps the point 0 to the point 1 and maps the point 1 to the point $\frac{1}{2}i$.
- **4.** Assume that γ is the positively oriented unit circle |z|=1 in \mathbb{C} . Let

$$f(z) = \int_{\gamma} \frac{1}{\cos(\zeta)(\zeta - z)^3} d\zeta .$$

Find $f'(\frac{\pi}{4})$. (The answer should be given in the form a+bi with $a,b \in \mathbb{R}$.)

5. Calculate the value of the integral

$$\int_{-\infty}^{\infty} \frac{x \sin 2x}{x^4 + 4} \ dx .$$

- **6.** Determine the number of zeros of the polynomial $f(z)=z^6-9z^2+11$ in the annulus $\{z:1<|z|<2\}$.
- 7. Find coefficients c_{-1} and c_1 in the Laurent series

$$\frac{1}{1 - e^z} = \sum_{n = -\infty}^{n = \infty} c_n z^n$$

convergent in the region $2\pi < |z| < 4\pi$.

(Continued on the next page!)

8. Assume that the functions f and g are analytic in the whole complex plane $\mathbb C$ and that $|f(z)| \leq |g(z)|$ for all $z \in \mathbb C$. Show that there exists a complex number α such that $f(z) = \alpha g(z)$ for all z.

Good Luck!

Svar till tentamen i KOMPLEX ANALYS 10hp 2015–01–14

1.
$$z'_n = \frac{\pi}{4} + 2\pi n - i \ln\left(\frac{\sqrt{3}-1}{\sqrt{2}}\right)$$
 and $z''_n = \frac{5\pi}{4} + 2\pi n - i \ln\left(\frac{\sqrt{3}+1}{\sqrt{2}}\right)$, $n \in \mathbb{Z}$.

2.
$$f(z) = aiz + B$$
, $a \in \mathbb{R}$, $B \in \mathbb{C}$.

3.
$$F(z) = \frac{z(2+3i)-2i}{z(2-2i)-2i}$$
.

4.
$$f'(\frac{\pi}{4}) = i \pi 11\sqrt{2}$$
.

5.
$$I = \frac{\pi e^{-2}}{2} \sin(2)$$
.

7.
$$c_{-1} = -3$$
, $c_1 = \frac{1}{2\pi^2} - \frac{1}{12}$.