UPPSALA UNIVERSITET Matematiska institutionen Jörgen Östensson

Prov i matematik KandMa2 m.fl. Complex Analysis 2017–05–31

Writing time: 08.00 - 13.00. Allowed aids: Writing materials. Each problem has a maximum credit of 5 points. Bonus points from the homework assignments will be added to your exam result. For the grades 3, 4 and 5 respectively, one should obtain at least 18, 25 and 32 points, respectively. Solutions should be clearly written and properly explained.

1. Solve the equation

$$(2-i)\sin z + \cos z = 2-i.$$

The answer should be given in the form a + ib, where a and b are real numbers.

2. Find all functions f = u + iv which are analytic in $\mathbb C$ and have real part of the form

$$u(x,y) = x \phi(y),$$

where ϕ is a real-valued function of one variable of class C^2 . The answer should be given as an expression in the variable z = x + iy.

3. Find a Möbius transformation which maps the region $\{z : |z| < 2 \text{ and } |z - i| > 1\}$ onto the region $\{w : 0 < \text{Im } w < \pi\}$, and which fixes the point 0.

4. Compute the values of the following integrals:

- (a) $\int_{\Gamma} \frac{1}{z+i} dz$, where Γ is the half-circle in the lower half-plane from $-\sqrt{3}$ to $\sqrt{3}$.
- (b) $\int_C \frac{z^2}{(z+1)(z-1)^2} dz$, where C is the counterclockwise oriented circle |z|=2.

5. Find the Laurent series expansion of the function

$$f(z) = \frac{1}{z^2(z-1)}$$

in the annulus 1 < |z+1| < 2.

6. Evaluate the integral

$$I = \int_{-\infty}^{\infty} \frac{\cos x}{e^x + e^{-x}} \, dx$$

by integrating the function $f(z) = \frac{e^{iz}}{e^z + e^{-z}}$ around the rectangle with vertices at $\pm R$ and $\pm R + i\pi$.

Turn page!

- 7. Determine the number of zeros of the polynomial $p(z)=z^6+17z^3+3z^2+2$ in the open square $\Omega=\{z=x+iy:|x|<1\text{ and }|y|<1\}.$
- 8. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ denote an entire function satisfying the estimate

$$|f(z)| \le Me^{|z|}$$
 for all $z \in \mathbb{C}$

for some constant M. Prove that the coefficients a_n satisfy

$$|a_n| \le M\left(\frac{e}{n}\right)^n, \quad n = 1, 2, 3, \dots$$

GOOD LUCK!

Svar till tentamen i Complex Analysis 2017–05–31

1.
$$z = \frac{\pi}{4} + 2n\pi - i\frac{\ln 2}{2}$$
 and $z = \frac{\pi}{2} + 2n\pi$, $n \in \mathbb{Z}$.

2.
$$f(z) = iAz^2 + Bz + iC$$
, where A, B, C are real constants.

3.
$$T(z) = \frac{2\pi i z}{z - 2i}$$
.

4. (a)
$$\frac{4\pi i}{3}$$
, (b) $2\pi i$.

5.
$$f(z) = -\sum_{n=1}^{\infty} \frac{n}{(z+1)^n} - \sum_{n=0}^{\infty} \frac{(z+1)^n}{2^{n+1}}$$
.

6.
$$I = \frac{\pi}{e^{\pi/2} + e^{-\pi/2}}.$$